.

)
®)
-
Q
8
x
()
Y
O
)
-
O
N
=
()
-
4+
£
<
()
()
£
(@)
-
()
O
3
X
O
-+
=
O
I

= Retool

Solving the frontend dilemma:

How to keep
engineers intheir

zone of excellence Es




INTRODUCTION

We know you’ve heard it before—that full-stack development as we know it is, actually, a

myth because no dev is really an expert in the entire stack.

But that’s an oversimplification.

What opinionated folks online miss is that there is a difference between an intentional full-
stack engineer and a reluctant one: a full-stack engineer that lives to toggle between
frontend and backend and a specialized engineer that’s dragged from project to project,
navigating a cognitive load that makes work feel ten times heavier.

Consider this scenario:

(46

“I'm a backend developer, currently constructing a

led to the slow response of displaying a modal.
Now, I'm tasked with finding an effective solution to

react-window, or exploring other alternatives. And |
haven’t even found the cause whether it’'s the amount of
event handlers, the size of the virtual DOM, or something
else.

backend feels so much [more] straightforward.”
— erikvdven on Hacker News

PAGE 1 HOW TO KEEP ENGINEERS IN THEIR ZONE OF EXCELLENCE

frontend app in ReactlS... it took me 20 minutes to realize
that a table with 1000 elements, each having edit buttons,

address this issue—whether it’s through pagination, using

‘= Retool


https://www.codemotion.com/magazine/it-careers/the-myth-of-the-full-stack-developer/
https://www.codemotion.com/magazine/it-careers/the-myth-of-the-full-stack-developer/
https://news.ycombinator.com/item?id=37300579

When frontends feel so mired in complexity, even the
most talented backend and full-stack engineers will
struggle to keep up with the workload required.

We’re not here to take a side on which discipline is
harder or more worthwhile to learn. Whatever a
developer’s specialization, spending time outside of it is
uncomfortable and inefficient (even for the most
enthusiastic full-stack engineers). And yet, limited
engineering headcount and misconceptions about
frontend work being ‘easier’ means too many backend
developers are still being asked to stretch their skills to
time-consuming frontend work.

Teams are increasingly expected to do more full-stack
work with fewer frontend resources.

For one recruitment firm specializing in seed-stage to
Series C engineering recruitment, just 5% of roles
they’re hiring for in 2025 are pure frontend, vs 50%
backend and 25% full-stack. Asher Hoffman, co-
founder of Coastal Recruiting said, “The first three hires
for a company with technical co-founders are almost
always backend engineers. It’s a bonus if they have
some frontend skills, but I'd peg it at 80% backend, 20%
frontend.”

The pressure to make do with fewer resources has led to
arise in “quiet hiring”—encouraging internal talent
mobility and upskilling to grow your teams’ capabilities
without hiring externally. All of this can be good news
for team members who want to develop lateral skills
and explore adjacent disciplines.

But some reluctant backend developers are expected to
fill in regularly on frontend tasks—in some cases, on
top of operations work they’ve already taken on. “You
build it, you run it” has evolved to include “and create
and maintain the UL”

PAGE 2 HOW TO KEEP ENGINEERS IN THEIR ZONE OF EXCELLENCE

When in-house frontend specialists are in short supply,
they’re often assigned to the highest-priority customer-
facing apps. This pressures full-stack and backend
developers to pick up the other frontend projects—
leaving their zone of excellence, where they do their
best work, behind.

‘= Retool


https://newsletter.pragmaticengineer.com/i/157389115/hiring-by-tech-stack-at-early-stage-startups
https://www.forbes.com/sites/dianehamilton/2024/12/03/the-rise-of-quiet-hiring-5-ways-to-use-trend-for-a-career-advantage/
https://retool.com/blog/how-to-rally-technical-teams-to-build-tooling-for-non-technical-teammates

The cost of
forcing full-stack

But why is it bad that your backend-focused devs are
building Uls? What might seem like a one-off project
or a praiseworthy “above and beyond” effort have
impacts that reverberate within your engineering org.

Unhappy and unfocused teams

When we talk about context switching in engineering,
we tend to focus on the cost of workday interruptions
—meetings and Slack notifications that pull a
developer out of their flow state. But when you ask a
backend engineer to take on frontend tasks, they’re
also constantly moving between different languages
and parts of the codebase.

A survey from Cornell University found that it takes us
an average of 9.5 minutes to return to focus after
switching between applications. The same study also
found that:

» 45% of respondents felt less productive from
context-switching

« 43% of respondents felt fatigued from switching
between tasks

Here’s one full-stack engineer on how working across
the stack is riddled with context switching:

Here’s what I'm dealing with:

« Switching branches in my IDE multiple
times a day

« Sometimes even switching to a
completely different IDE.

» Closing and reopening web browser tabs
for different projects.

» Recreating environments and setups for
each task.

- jumping between Slack channels to
follow project-specific discussions.

If this experience is painful even for a full-stack
engineer who chose this life, it’s not surprising then
that dedicated backend engineers might be reluctant
to spend time away from their chosen specialization.

Context switching and its cognitive cost doesn’t just
cause the frontend work to suffer. If your team is
spread too thin, everything—including the engineer’s
specialty—is compromised.

PAGE 3 HOW TO KEEP ENGINEERS IN THEIR ZONE OF EXCELLENCE E Re-tOOI


https://assets.qatalog.com/language.work/qatalog-2021-workgeist-report.pdf
https://www.reddit.com/r/AskProgramming/comments/1hnei2q/how_to_deal_with_context_switching_as_a_fullstack/
https://www.reddit.com/r/AskProgramming/comments/1hnei2q/how_to_deal_with_context_switching_as_a_fullstack/

Framework fatigue

= r/webdev -3 yr. ago
&« A yr. ag

Ultra_HR

Front end frameworks: why do they make me feel so stupid?

Frameworks make some tasks easier, but each comes
with its learning curves and tradeoffs. Rapid
development has put more pressure on frontend
engineers to keep up with the latest “best” framework
—which is near impossible for anyone not working
full-time in the space.

For organizations that have standardized, React has
become the go-to framework and for good reason—it’s
a powerful abstraction for building Uls. But it’s not the
right solution for every use case, and even frontend
developers are objecting to the Reactification of
everything. Even in a standardized organization,
building a full-blown React app for every use case puts
your backend devs on the fast-track to frustration.

Bugs and delays

While it might be easy to dismiss frontend as window
dressing, it is arguably just as—if not more—critical to
the success of a business as backend work. Assuming
you meet baseline performance requirements, a lot of
the work that happens on the backend comes down to
implementation details that don’t directly impact
customers’ experience of your services.

We know that estimating engineering work is
notoriously difficult, and it’s only harder when asking
someone to commit to development timelines
including work outside of their core capabilities. If
your team is taking on frontend tasks, it’s easy to
overlook things like accounting for different browsers
or window sizes. The resulting delays to feature
rollouts due to frontend bugs or an issue in the UI that
affects a lot of customers can hurt the business’s
reputation.

PAGE 4 HOW TO KEEP ENGINEERS IN THEIR ZONE OF EXCELLENCE

Apps that miss the mark

A lack of frontend experience (or, let’s be honest,
interest) can mean that no one on your team is asking
the right questions about what they’re tasked with
building. This can lead to apps that technically meet
acceptance criteria, but frustrate your users.

This isn’t only true for customer-facing apps. Sure,
internal dashboards and interfaces may not require
the same polish as your core product. But no one
wants your sales team to be self-serving data via a
dashboard that’s prone to hallucinations, or an
awkward and unintuitive interface resulting in
engineering hours wasted on an app that its intended
users don’t use.

‘= Retool


https://www.youtube.com/watch?v=XHH453A75n4
https://www.youtube.com/watch?v=XHH453A75n4
https://medium.com/@Soyale/non-developers-this-is-why-software-estimation-is-hard-a47cca9c2511
https://medium.com/@Soyale/non-developers-this-is-why-software-estimation-is-hard-a47cca9c2511

How to keep your
devs in their zone
of excellence

With the right team structure and tools, you can create
an environment where your engineers can do their
best work without having to be experts in every layer
of the stack, and create a flourishing team in the
process.

Encourage T-shaped skills

Specialization doesn’t mean diminishing any full-
stack skills that might exist on your team. Generalists
bring fresh perspective and creativity to engineering
problems (just read the comments on this post). But
just because someone is full-stack doesn’t mean they
should have to be at all times.

The most resourceful engineers have T-shaped skill
sets: deep specialization in one area complemented by
a solid working knowledge of adjacent parts of the
ecosystem. The idea of being T-shaped is not about
being ready to replace or sub in for other roles. A well-
rounded skill set makes them better collaborators
with teammates by understanding the tradeoffs and
considerations that engineers in other disciplines will
be thinking about.

Exposure to related disciplines helps them avoid
getting blocked on small tasks outside of their
wheelhouse. Structuring your team around their T-
shaped skills will ensure awareness and alignment
without over-extension of skills.

Equip your team with the
right resources

Even without the headcount to add the relevant
expertise to your team, you can support specialization
without cutting corners. Identify tasks with
undifferentiated complexity that you can outsource to
developer-first solutions and free up your team to
focus on work that only they can do.

PAGE 5 HOW TO KEEP ENGINEERS IN THEIR ZONE OF EXCELLENCE

Investing in an application development platform
relieves your teams of the work they’re less qualified,
inspired, or equipped to do, freeing them up to focus
on what they’re good at. Offloading the heavy lifting to
a platform saves time and effort on both the building
and ongoing maintenance.

Removing complexity this way means you can say yes
to more high-impact projects (that your team wants to
do), because your developers can build anything they
can imagine, without worrying about limitations—
whether that’s their time, expertise, preference, or
stack.

Know how and when
to use Al

Yes, your backend engineers are resourceful, and they
now have access to Al-assisted tools that can support
frontend work, if not automate it completely.

But Al tools are most effective when outputs are
combined with human judgment, and that judgment
comes from deep knowledge and experience. Say your
team is using an Al coding assistant to create a custom
dashboard quickly. If your backend or full-stack
engineers aren’t as familiar with frontend languages
or concepts, they might not know whether the code
they’re getting from tools like Copilot, Cursor, or
Replit is any good. Al tools also usually default to
fixing errors and problems with more code, while a
human engineer might simplify instead.

If your backend engineers are leaning on Al to make
major frontend decisions on frameworks and libraries,
you won'’t be setting yourselves up for success.
Without frontend-informed prompting, an LLM could
recommend an obscure library that meets your needs
at the moment but lacks any long-term support.

Without a deep knowledge of frontend, relying on Al
may result in an app that meets initial acceptance
criteria, but sets you up for significant tech debt down
the line with code that’s difficult for others to modify
and maintain, or with performance implications for
your frontend or backend, depending on how requests
are made to your API.

‘= Retool


https://www.linkedin.com/posts/alexander-chiou_techcareergrowth-machinelearning-growthtips-activity-7246911772304048128-QJav?utm_source=share&utm_medium=member_desktop&rcm=ACoAAAYJvqcB7Wql6HEWUsUMLKT0QnMC-S34g9g
https://alexkondov.com/the-t-shaped-engineer/
https://retool.com/blog/popular-templates-internal-tools
https://retool.com/blog/popular-templates-internal-tools

Your backend engineer may well complete the task in
front of them. But without knowing what they don’t
know, building with Al without understanding the
output can leave teams trapped in a cycle where Al is
the only entity capable of maintaining the app.

The future of
frontend skillsets

Teams that stick with approaches and frameworks
they know and love will produce better work in less
time. Combining your specialists’ T-shaped expertise
with tooling that eliminates unnecessary complexity
will make your engineering department unstoppable.

With the right solutions in place, engineers can
concentrate their efforts on the work that they’re best
at and that they want to do—like building elegant,
impactful solutions that people want to use. For
engineers at Sage Home Loans, that meant offloading
mundane and time-consuming day-to-day tasks like
managing dependencies and handling permissions
and authentication to Retool.

4G

“Convincing engineers to work on legacy admin tools
is not the easiest thing. We’ve been able to obfuscate
a lot of the functionality and say you’re going to work
on cutting-edge integration, not updating the button
or grid layout on the dashboard. It’s helped us attract
and retain technical talent.”

— Chris Jaynes, a former Vice President at Sage.

Abstracting low-priority work isn’t cutting corners—
it’s the best path forward for backend and full-stack
developers who want a better way of working. It’s what
will allow them to prioritize meaningful, important
projects (both internal and external), without the
heavy cognitive load of moving around between
different parts of the stack. It’s how engineering teams
will thrive.

PAGE 6 HOW TO KEEP ENGINEERS IN THEIR ZONE OF EXCELLENCE

‘= Retool


https://retool.com/blog/ai-app-tutorial
https://retool.com/blog/how-sage-built-digital-mortgage-company

The fastest way to
build good software

Ready to unblock your team? See how Retool
customers are saving engineering time and
shipping internal tools without the heavy
lifting. Book a demo to give it a whirl, or start
for free today.

o

book a demo

start for free

= Retool



https://retool.com/?_keyword=retool&adgroupid=161487265562&utm_source=google&utm_medium=search&utm_campaign=6470119914&utm_term=retool&utm_content=693672155978&hsa_acc=7420316652&hsa_cam=6470119914&hsa_grp=161487265562&hsa_ad=693672155978&hsa_src=g&hsa_tgt=kwd-395242915847&hsa_kw=retool&hsa_mt=e&hsa_net=adwords&hsa_ver=3&gad_source=1&gclid=Cj0KCQjw6uWyBhD1ARIsAIMcADphT95mL86Lx-Ryo62yaIaon0LrRMrEvMxdjssiyxTe_SByMfJaQiEaAnjwEALw_wcB
https://retool.com/?_keyword=retool&adgroupid=161487265562&utm_source=google&utm_medium=search&utm_campaign=6470119914&utm_term=retool&utm_content=693672155978&hsa_acc=7420316652&hsa_cam=6470119914&hsa_grp=161487265562&hsa_ad=693672155978&hsa_src=g&hsa_tgt=kwd-395242915847&hsa_kw=retool&hsa_mt=e&hsa_net=adwords&hsa_ver=3&gad_source=1&gclid=Cj0KCQjw6uWyBhD1ARIsAIMcADphT95mL86Lx-Ryo62yaIaon0LrRMrEvMxdjssiyxTe_SByMfJaQiEaAnjwEALw_wcB
https://retool.com/?_keyword=retool&adgroupid=161487265562&utm_source=google&utm_medium=search&utm_campaign=6470119914&utm_term=retool&utm_content=693672155978&hsa_acc=7420316652&hsa_cam=6470119914&hsa_grp=161487265562&hsa_ad=693672155978&hsa_src=g&hsa_tgt=kwd-395242915847&hsa_kw=retool&hsa_mt=e&hsa_net=adwords&hsa_ver=3&gad_source=1&gclid=Cj0KCQjw6uWyBhD1ARIsAIMcADphT95mL86Lx-Ryo62yaIaon0LrRMrEvMxdjssiyxTe_SByMfJaQiEaAnjwEALw_wcB
https://retool.com/?_keyword=retool&adgroupid=161487265562&utm_source=google&utm_medium=search&utm_campaign=6470119914&utm_term=retool&utm_content=693672155978&hsa_acc=7420316652&hsa_cam=6470119914&hsa_grp=161487265562&hsa_ad=693672155978&hsa_src=g&hsa_tgt=kwd-395242915847&hsa_kw=retool&hsa_mt=e&hsa_net=adwords&hsa_ver=3&gad_source=1&gclid=Cj0KCQjw6uWyBhD1ARIsAIMcADphT95mL86Lx-Ryo62yaIaon0LrRMrEvMxdjssiyxTe_SByMfJaQiEaAnjwEALw_wcB
https://retool.com/?_keyword=retool&adgroupid=161487265562&utm_source=google&utm_medium=search&utm_campaign=6470119914&utm_term=retool&utm_content=693672155978&hsa_acc=7420316652&hsa_cam=6470119914&hsa_grp=161487265562&hsa_ad=693672155978&hsa_src=g&hsa_tgt=kwd-395242915847&hsa_kw=retool&hsa_mt=e&hsa_net=adwords&hsa_ver=3&gad_source=1&gclid=Cj0KCQjw6uWyBhD1ARIsAIMcADphT95mL86Lx-Ryo62yaIaon0LrRMrEvMxdjssiyxTe_SByMfJaQiEaAnjwEALw_wcB

	front
	interior-1
	interior-2
	interior-3
	interior-4
	interior-5
	interior-6
	back-2

