Maintain

Four Strategies for Reducing Maintenance Costs and Protecting the Bottom Line

Table of Contents

Four practical strategies to cut maintenance costs	
1. Optimize preventive maintenance and planned downtime	5
2. Reduce unplanned downtime	16
3. Automate workflows to increase team productivity	28
4. Optimize your inventory management	37

This isn't just a cost-cutting manual. It's a guide for turning maintenance into a competitive advantage.

This guide is about saving money. Not because leadership asked, but because maintenance deserves to be seen as a game-changer.

Why? Because manufacturers crave predictability. Except, most things that impact the bottom line, like consumer trends or global trade, are out of their control. So they look inward. And maintenance has the potential to be one of their most powerful levers for replacing chaos with control

Every minute a machine runs at peak performance, and every dollar saved doing it, means better margins and more capital to invest in protecting those margins.

But this is getting harder. While 74% of teams reduced or stabilized downtime, only 20% saw costs drop, according to the 2025 State of Industrial Maintenance report.

To truly protect the bottom line, maintenance leaders must diversify their efforts. This guide outlines practical strategies to uncover inefficiencies and reduce costs without compromising reliability.

Four Practical Strategies to Cut Maintenance Costs

- Optimize preventive maintenance and planned downtime
- Reduce unplanned downtime
- Automate workflows to increase team productivity
- Digitize inventory management to reduce parts spend

Optimize preventive maintenance and planned downtime

Everyone knows you can draw a direct line between preventive maintenance and cost savings.

But while 71% of teams say preventive maintenance is their main strategy, less than 35% spend a majority of their time on it. Add in the fact that all downtime is getting more expensive, and optimizing your PM schedule becomes critical to reducing costs.

That's why this section will help you identify:

- 1. Where and how to do more preventive maintenance
- 2. Where and how to make preventive maintenance more efficient

of teams said preventive maintenance was their main strategy.

35%

spend a majority of their time on it.

But first: The information you'll need to optimize preventive maintenance

Data is one of your most effective tools when optimizing PMs. Here are three important pieces of information you'll need to make an impact:

- 1 The cost of downtime
- Asset history and performance trends
- Your team's processes, workflows, and schedules

1. The cost of downtime

Knowing the cost of downtime, planned or unplanned, will help you set a spending baseline, uncover inefficiencies, and track progress. The metrics used to calculate costs may differ slightly between assets, but here are three core data points:

Metric	How to calculate it
Labor costs	(Average per hour labor rate × Operators × Downtime) + (Average per hour labor rate × Maintenance technicians × Repair time
Inventory costs	Cost of parts and materials used in a repair
Production costs	Price of product × Rate of operation × Downtime

Example downtime calculation

Cost type	Event 1	Event 2	Event 3	Total	Average
Downtime	2 hrs	6 hrs	4.5 hrs	12.5 hrs	4.2 hrs
Labor	\$450	\$1,350	\$1,012	\$2,812	\$937.33
Inventory	\$300	\$2,000	\$350	\$2,650	\$883.33
Production	\$1,260	\$3,780	\$2,835	\$7,875	\$2,625.00
Total	\$2,010	\$7,130	\$4,197	\$13,337	\$1,067/h

2. Asset history and performance trends

Knowing your assets inside-out will help you find and target inefficiencies costing you the most. Here are three key data points for equipment:

Asset history and criticality: How does failure impact production and safety? How often does the asset fail? How long does it take to repair? This information helps you find high-risk assets and potential repair or replace decisions. Use this chart to calculate asset criticality:

Maintenance costs: How much does it take to maintain an asset (labor, parts, and time)? How has this changed over time? This will help you spot troubling trends and opportunities

Upcoming production: Plan ahead by understanding how production schedules change asset criticality and the likelihood of failure.

How to determine asset criticality

	Impact of equipment failure					
Probability of equipment failure		5	4	3	2	1
	5	25	20	15	3	5
	4	20	16	12	8	4
	3	15	12	9	6	3
	2	10	8	6	4	2
	1	5	4	3	2	1

Moderate criticality

Low criticality

3. Your team's processes, workflows, and schedules

People and processes are a huge part of the equation when optimizing planned maintenance. Here are five areas to collect data on:

Work order volume: This includes PM frequency and reactive vs. preventive volume.

Labor efficiency: Time spent on actual maintenance versus admin tasks, travel, or parts retrieval.

Team skills: A view of specializations and certifications on your team, and tasks or equipment that require certain technicians.

Standard processes: How are work orders and requests received, prioritized, scheduled, and given to technicians?

Team challenges: What are the biggest frustrations, time-wasters, and obstacles preventing your team from being efficient? Get this straight from your team.

Four strategies for optimizing preventive maintenance to reduce costs

- Follow the 80/20 rule for prioritizing PMs
- Audit your schedule and eliminate duplicate, redundant, and unnecessary PMs
- Find the efficiency leaks in your repair processes
- Train operators to do select maintenance tasks

1. Follow the 80/20 rule for prioritizing PMs

With more PMs than there's time for, it's important to focus on assets that cause the most downtime and costs. This is often an 80/20 split—20% of assets account for 80% of failures.

Here is a five-step framework for finding bad actors and reprioritizing PMs to address them without sacrificing availability elsewhere:

Pull failure and cost data: Get the number of failures, downtime per event, repair costs, labor hours, and parts used for the last 12 months.

Rank assets by total impact: Identify the top 20% of assets that contribute to failure-related spending.

Analyze root causes and PM effectiveness: For each high-impact asset, review past PMs to understand if they were skipped or ineffective to identify if changes in preventive maintenance frequency, scope, or timing could help.

Adjust your PMs: Increase PM frequency and add new inspections or tasks related to failure patterns. Shift resources from low-risk equipment to free capacity for your bad actors.

Track, refine, and repeat: Monitor results to see if your plan led to fewer failures, lower cost per failure, and lower total costs. Adjust your strategy quarterly if needed.

2. Eliminate duplicate, redundant, and unnecessary PMs

Cutting PMs from your schedule can free up costs and capacity, but it requires you to walk the line between efficiency and risk. Here's a checklist for striking that balance:

Collect your full PM schedule: Pull a list of all scheduled preventive maintenance tasks, including:

- Task name
- Frequency
- Assigned assets
- Estimated time
- Responsible technician

Identify high-frequency or overlapping tasks: Look for PMs scheduled on the same asset within short time windows. Highlight repetitive tasks, like multiple cleanings on one machine.

Review the effectiveness of tasks: Review what each PM is supposed to be preventing and if it's working. Flag tasks that aren't linked to recent failure or measurable benefit.

Consolidate, combine, or remove PMs: Combine similar PMs into a single task. Extend PM intervals on low-impact or low-failure assets. Cut tasks that don't serve a clear purpose.

Monitor changes and reallocate resources: Track how much time you've freed up and where it can be spent. Audit PMs quarterly to keep your schedule lean.

3. Find the efficiency leaks in your repair processes

Every minute of preventive work has the potential to be optimized. Increasing asset availability by just 10 minutes a day can put millions back into the company every year. Here are the most common causes of inefficiency in PM processes and how you can plug them to cut costs:

Maintenance requests: Poorly scoped or delayed requests slow everything down. Here's how to plug the leak:

- Use mobile forms with required fields like issue type and urgency.
- Enable operators to submit requests directly with photos or notes.
- Standardize request categories to reduce triage time.

Assigning work orders: Work orders that are unassigned or assigned to the wrong person waste valuable time. Here's what you can do about it:

- Auto-assign PMs based on asset, location, or technician skill set.
- Use calendar views or dispatch boards to balance workload across the team.
- Set escalation rules for unclaimed or overdue tasks.

Accessing inventory: Missing or hard-to-find parts delay PMs and prolong downtime. Here is how to fix that issue:

- Build repair kits for frequent PMs to reduce the time to retrieve BOMs.
- Create inventory stations throughout your facility to reduce travel time.
- Set up minimum inventory levels and trigger automatic reorders.

SOP access: Searching for asset histories, manuals, and other materials eats up time while costs rise. Here are some solutions:

- Digitize SOPs and attach them to PMs.
- Create QR codes for manuals, work orders, and SOPs that you can attach to assets
- Include photos, videos, and checklists for consistency.
- Regularly audit and update SOP effectiveness.

4. Train operators to do select maintenance tasks

Training operators to do routine inspections helps your team spend more time resolving potential failures and reducing costs. Operators are also closest to equipment, and with a little training, can be helpful in catching potential failure earlier. Here is a checklist for implementing this strategy:

Identify tasks that can be operator-led: Start with:

- Visual inspections (leaks, wear, vibration)
- Basic lubrication
- Filter and belt checks
- Cleaning tasks tied to performance or safety

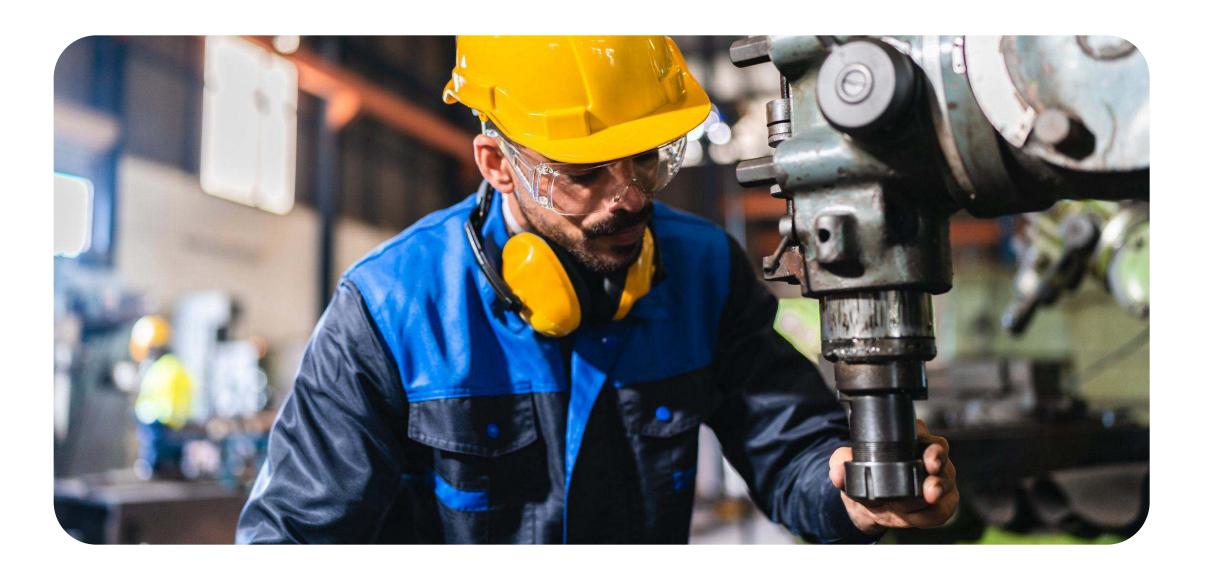
Create simple, repeatable SOPs: Enable operators with clear processes for routine maintenance, like:

- Visual SOPs with step-by-step checklists
- Photos or icons to reduce reliance on technical language
- Digital SOPs for quick access

Train operators: Empower operators to own tasks by:

- Pairing operators with techs for initial walkthroughs
- Building a QA layer with mandatory sign-offs
- Setting up a process for flagging failed inspections

Reduce unplanned downtime



A single unexpected failure could cost more than a year of preventive work when considering emergency parts orders, the cost of lost production, and other factors.

While companies know unplanned downtime is their primary threat, it remains a massive problem. In fact, 58% of teams spend a majority of their time on unplanned maintenance, according to the 2025 State of Industrial Maintenance report.

We already covered how to optimize preventive maintenance to stop failure. This section will cover strategies for responding to and resolving unplanned downtime more efficiently to cut costs. 58%

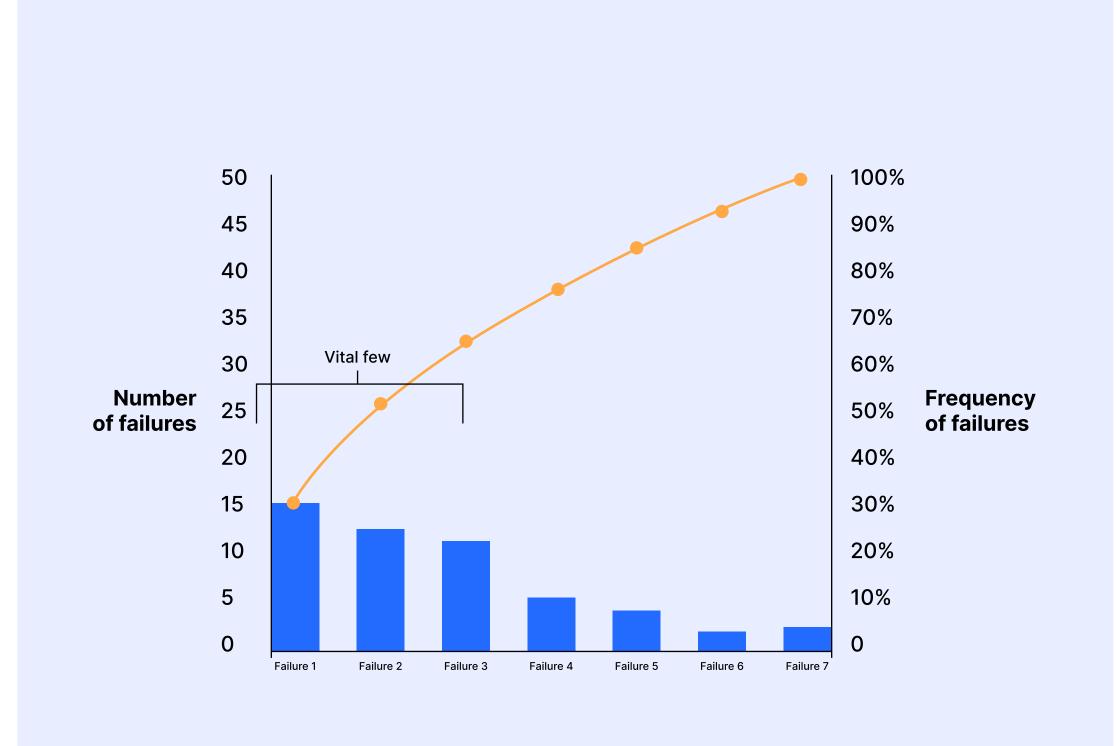
of teams spend a majority of their time on unplanned maintenance

But first: The information you'll need to reduce unplanned downtime

Knowledge is power in the fight against downtime. Here are four pieces of data that'll help you reduce downtime:

- 1 Downtime trends and root causes
- 2 Response and recovery time
- 3 Parts and tools availability
- Technician insights and root cause analysis process

Strategy 2 Reduce unplanned downtime



1. Downtime trends and root causes

Knowing the frequency, reason, and cost of failure is the first step to reducing it. Here's the data you need:

- Frequency and cost of unplanned downtime by asset
- Primary failure modes or causes
- Assets with the highest recurring failures and costs

A Pareto chart, like the one below, can help prioritize failures that cause the most unplanned downtime.

2. Response and recovery time

When every minute of maintenance can cost thousands of dollars, it's important to understand how every minute is used. Here's data that'll help:

- Time from failure detection to repair start
- The processes for responding to failure
- Mean time to repair (MTTR)
- Time from the end of repair to equipment start up

3. Parts and tools availability

Parts usage is a top-three cost of unplanned downtime. Knowing how your inventory processes affect failure response is essential to reducing spend in this area. Keep track of:

- Downtime events delayed due to missing parts
- Average time to retrieve a bill of materials for repairs
- Usage rates of critical spares
- Minimum part counts and cost of emergency orders

4. Technician insights and root cause analysis process

Talk to technicians and other members of the team about:

- Frustrations and obstacles when responding to unplanned failure
- Undocumented workarounds, processes, or troubleshooting techniques
- Ineffective or inefficient areas of the downtime response process
- Information that would accelerate repairs or increase first time fix rates

Strategy 2 | Reduce unplanned downtime

Maintain X

Five strategies for reducing unplanned downtime to reduce costs

- Cut the time it takes to respond to equipment failure
- Reduce the time to retrieve parts and materials
- Make equipment SOPs, notes, and other materials more accessible
- Reduce the time to notify operators when assets are back online
- Start or fine-tune your root cause analysis process

1. Cut the time it takes to respond to equipment failure

The first step in cutting the cost of unplanned downtime is getting a technician to the site of failure quicker. Here are some ways to analyze this part of the process and plug any gaps in it:

Digitize failure reporting: Create digital request forms operators can use to notify maintenance of a failure from mobile devices. Standardize these forms so technicians have all the information they need for the job.

Send notifications for urgent repairs: Auto-assign high-priority failures to specific techs or teams with push notifications on mobile devices.

Define emergency roles: Assign roles for diagnostics, parts running, and communication during breakdowns. Create escalation rules so no task goes unclaimed.

Track response time and identify blockers: Measure time from failure detection to repair start. Review and remove common blockers, like approval delays or missing information.

2. Reduce the time to retrieve parts and materials

Parts delays are a common and preventable cause of extended downtime. Here are five ways to speed up parts retrieval and reduce the time to recovery:

Link BOMs to critical assets: Attach a bill of materials to common repair tasks for all high-priority assets so techs know exactly what they need before they go to the stockroom.

Build emergency BOM kits: Create parts kits for common or high-impact failures so technicians and store managers don't spend time searching shelves.

Set up satellite parts stations: A round-trip to the storeroom can cause major delays. Having inventory stations near critical assets can help cut down on this time.

Set minimum thresholds and auto-reorder rules: Ensure critical spares are always in stock by establishing minimum stock levels and automatic reordering triggers.

Address common delays: Review situations where techs were delayed and work to improve staging, labeling, or stockroom layouts.

3. Make equipment SOPs, notes, and other materials more accessible

Making repair resources as accessible as possible ensures there's no time wasted searching for manuals, repair histories, or other information. Here are four steps for doing that: **Use QR codes on equipment:** Link QR codes to relevant documents so technicians can get information on a mobile device at the point of repair.

Digitize SOPs and checklists: Allow technicians to find procedures, BOMs, and manuals on a mobile device to save trips to the office.

Link documentation to assets: Attach repair checklists, photos, and notes directly to digital asset records to centralize information for technicians.

Set up digital communication channels: Technicians often need information from operators or other team members, spending valuable minutes finding them. Eliminate this problem with a dedicated SMS channel, WhatsApp groups, or a CMMS chat.

4. Reduce the time to notify operators when assets are back online

If operators aren't informed that an asset is production-ready, it can cause delays that eat into productivity and increase costs. Here are three ways to close that loop:

Set up auto-notifications when equipment is online: Trigger email, SMS, or app alerts to operators or line leads when a work order is completed or an asset is online.

Add a 'back in service' checklist item: Include operator notification as a final task on work orders to prevent a missed hand-off.

Track time between work order completion and restart: Add a timestamp when a repair is done and compare it to when production resumes. Look for patterns and reduce slowdowns.

5. Start or fine-tune your root cause analysis process

This strategy is about preventing failures by optimizing your root cause analysis. Here are four places to look for inefficiencies in your RCA process and how to patch them up:

Pick the right failures: Not every breakdown needs deep analysis. Focus on repeat issues, high-cost failures, or anything tied to safety

Simplify your RCAs: RCAs often don't get done because they pull people from more immediate tasks. A simplified process increases the chance that more RCAs are completed.

Bring multiple perspectives to the table: Loop in operators, techs, and production supervisors. A full picture of the failure helps uncover critical issues.

Track recurring causes and trends over time: Use tags or categories, like "improper setup," to surface hard-to-see patterns.

Automate workflows to increase team productivity

Why manual workflows cost more

How much time does your team spend creating repeating work orders by hand, chasing down paper requests, and manually entering data? If you're like many maintenance teams, it probably too much.

Manual workflows cut into your profit margins by:

- Limiting the time your team has to work on bigger problems
- Reducing visibility into the real-time status and condition of equipment, leading to delayed or reactive maintenance
- Increasing the likelihood of errors in maintenance records, leading to poor maintenance decisions, regulatory compliance issues, and inefficient resource allocation
- Creating unnecessary silos and hindering collaboration

"On average, we were processing over a hundred paper work orders each week. And each request required multiple touch points and manual data entry. What should have been a simple request became a physical paper chase across multiple teams and departments."

Adam McLaren

MEP (Mechanical, Electrical, and Plumbing) manager at the Public Works Department of the Cayman Islands

The solution? Automation

Manufacturing has seen incredible technological progress over the past decade. That said, there might not be another technologically sophisticated industry where so many still rely on whiteboards, sticky notes, and paper-based workflows.

This is where workflow automation can give your team a leg up. Here are a few benefits of automating your team's processes:

Maximize productivity: Relying on manual tasks limits the number of hours your team can dedicate to more productive maintenance work. By automating administrative workflows (such as work order generation), your team can focus on high-value tasks.

Improve quality control and training: Easily accessible, standardized workflow systems act as defined pathways for technicians. Plus, when new workers join the team, they can refer to existing workflows during onboarding.

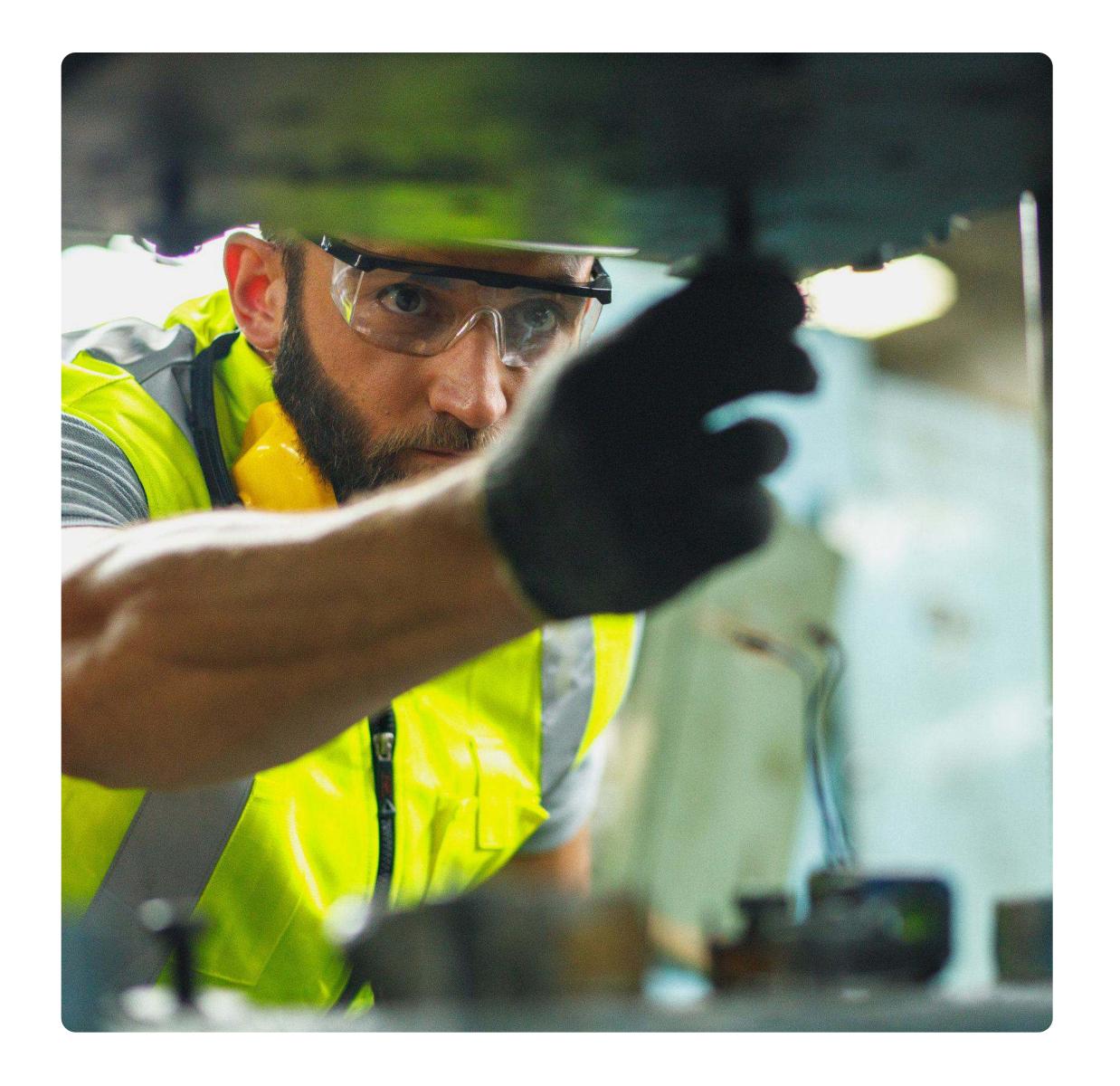
Minimize human error: According to a Plant Engineering survey, operator error accounted for 11% of unplanned downtime. Some human error is unavoidable. A technician may forget to send a work request from a customer to the manager for approval. But when you automate workflows, these kinds of errors, and their impact, can be significantly reduced.

Increase employee satisfaction: Automating mundane administrative tasks helps team members spend time on more impactful work, increasing job satisfaction and employee retention. This is a notable advantage, considering the high cost of replacing skilled workers. Automating workflow processes also improves safety and team communication.

Maintain X

Five steps to create an automated workflow

- 1 Identify repetitive maintenance tasks
- 2 Outline processes
- 3 Design the automated workflow
- 4 Test and optimize
- 5 Train users


1. Identify repetitive maintenance tasks

Identify maintenance tasks and procedures that:

- Are repetitive
- Take up a lot of your team's time
- Are prone to mistakes
- Demand a high level of accuracy.

Track maintenance tasks over a two-week period to see which ones show up again and again.

For example, is your team manually checking equipment and writing up work orders? Explore using sensors and IloT devices to continuously collect equipment data. Then, using a modern CMMS, automatically create work orders based on triggers like time, usage, and/or condition of the asset.

2. Outline processes

Create standard operating procedures (SOPs) to document how to accomplish repetitive tasks. Ask machine operators and technicians who regularly perform the procedures to outline how they complete the work on a daily basis. Turn these tasks into documented procedures with clear steps.

To automate this process, you can use <u>pre-built SOP templates</u> or generative AI tools like <u>MaintainX CoPilot</u> to create SOPs with a simple prompt.

"We're continuing improvements on the procedures side and getting better at using the Al features [in MaintainX], which is giving us a jumpstart. You can get writer's block when you're thinking about how to make a procedure, but the Al system allows you to quickly jump into it."

Ryan Bell

Assistant General Manager of Public Works, Villages Golf and Country Club

3. Design the automated workflow

Create a detailed plan for each automated workflow based on documented processes. Specify how each step in the process will be performed, defining logic, triggers, decision points, and integration points.

For example, if you're looking to automate scheduling for preventive maintenance tasks, define when, where, and how the tasks will be created. You can automate approved work orders with CMMS software and have them repeat at set intervals for routine maintenance activities. Or you can schedule preventive work when an asset hits a certain usage threshold and attach the appropriate SOPs.

"MaintainX has vastly helped improve our work output and created a more efficient way of managing our maintenance schedule."

Kate CollinsGeneral Manager, Aparto

4. Test and optimize

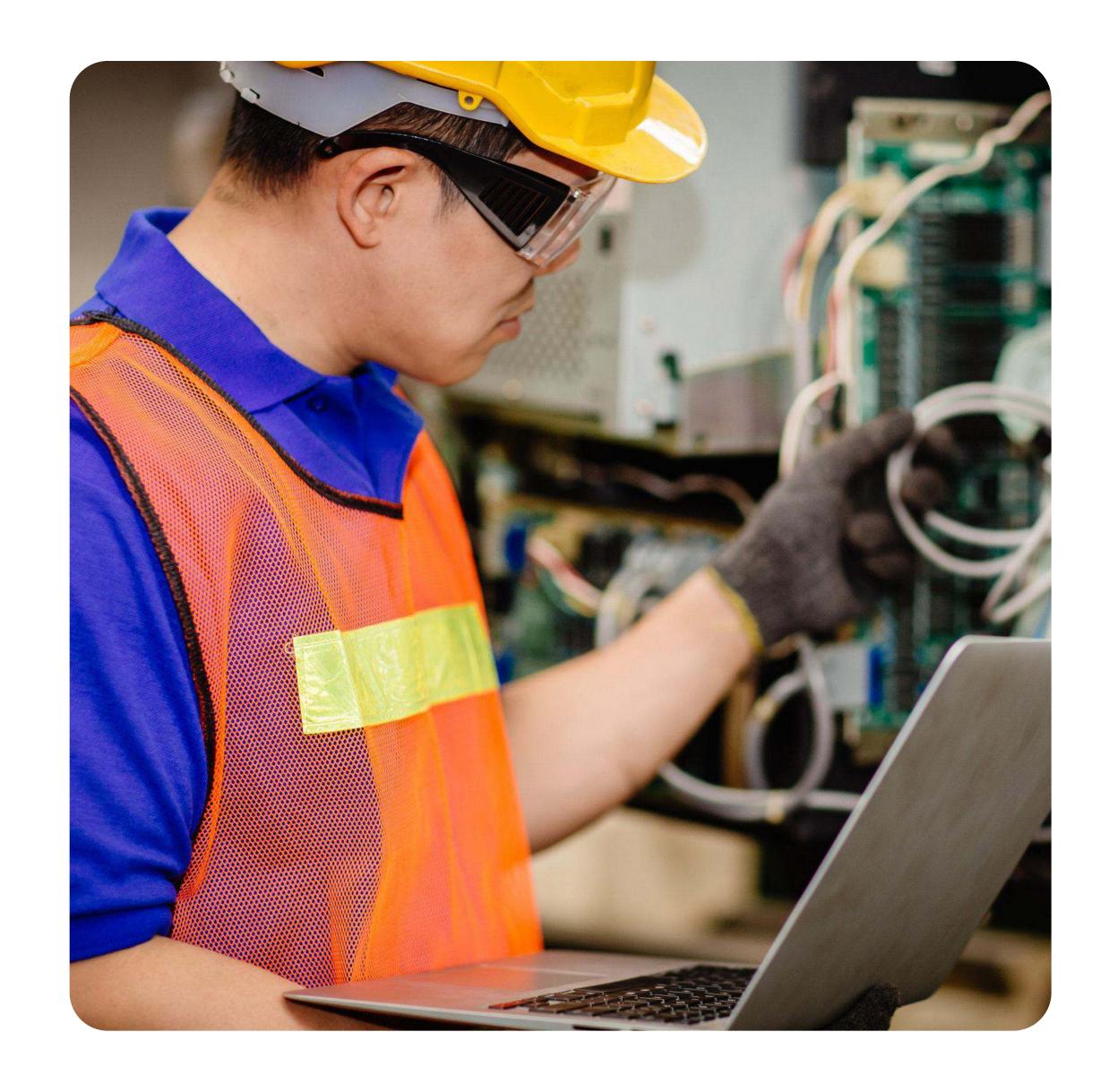
A small-scale pilot project will help you identify issues and tailor your training plan before rolling out automated workflows. Work with one or two team members to get their feedback and insights. They can also help advocate for the new process with the larger team when you're ready to launch.

5. Train users

Offer your team comprehensive training on the automated workflows. It's important to communicate how implementing a new workflow will improve their day-to-day work. For instance, by reducing errors and helping them complete tasks faster. You should also clarify how the automated workflows will integrate with existing systems or tools they use.

Beyond initial training, your team will ideally have access to resources like instructional videos or quick-reference guides. A regular cadence of feedback will improve performance by encouraging the team to review and suggest improvements to workflows.

Optimize your inventory management


As a maintenance professional, you're already well aware that poorly managed inventory can lead to substantial costs.

Stockouts increase downtime and inflate procurement costs by forcing teams to make rush orders for parts.

And while stocking up may seem like an obvious solution, this strategy comes with its own challenges, like expensive carrying costs that cut into profits. Plus, when teams manually check stock levels and search for parts, it increases the time they're spending on activities that don't add value.

Moreover, according to the <u>2025 State of Industrial Maintenance</u> <u>report</u>, poorly managed inventory is a leading culprit for rising downtime costs. For facilities that reduced the cost of unplanned downtime last year, one of the top paths to savings was improving their parts inventory management.

Read on to learn how to set up your inventory so it's serving you, not costing you.

Start with a clean slate

A great way to kick off the inventory optimization process is by getting rid of parts that haven't been used in a long time or don't fit for your current equipment. Understandably, many maintenance professionals hesitate to scrap old parts, but those who've experienced the benefits of a streamlined parts inventory caution against this.

"It's that sunk cost fallacy of, 'I spent \$10 to go to a movie and now I'm going to sit through it even though it's terrible.' But your time is worth more than that," Greg Wortman, operations manager at Redimix, explains. "It's the same thing when you're trying to put together a maintenance program. You may have a bunch of old parts, but if they're not good or never being used, they should be gone."

A CMMS or EAM can expedite the clean-up process and set you up for success going forward. These systems can automatically categorize parts by usage frequency and criticality. From there, your team can look at usage patterns for each part to determine the minimum or maximum amount to stock.

"Because we had taken a thorough inventory, we discovered two brand new, still-in-the-box wrenches from 2017. We utilized both immediately upon request. The savings was about \$1,000 per wrench, plus saving on the cost of time, overnight shipping, and lost production time."

Ronald GibsonMaintenance Technician

Digitize your parts inventory management system

After tackling the initial clean-up process, it's critical to adopt a system to sustain your inventory management efforts.

However, traditional inventory management systems often rely on errorprone, manual recordkeeping. By digitizing your inventory management with a modern EAM/CMMS, your team gains real-time visibility into stock levels and removes human error from the equation.

Here's what to keep in mind as you start digitizing.

Use a CMMS to create a parts inventory database

A modern CMMS allows you to build a comprehensive, easily accessible database of parts.

As you create it, keep in mind that you should include detailed information about each part, including its location in the warehouse and on the shelf. You can attach QR or bar codes to parts locations to help your teams find inventory. With a mobile CMMS, technicians can quickly consult their phones about the location of each part.

Track your parts usage

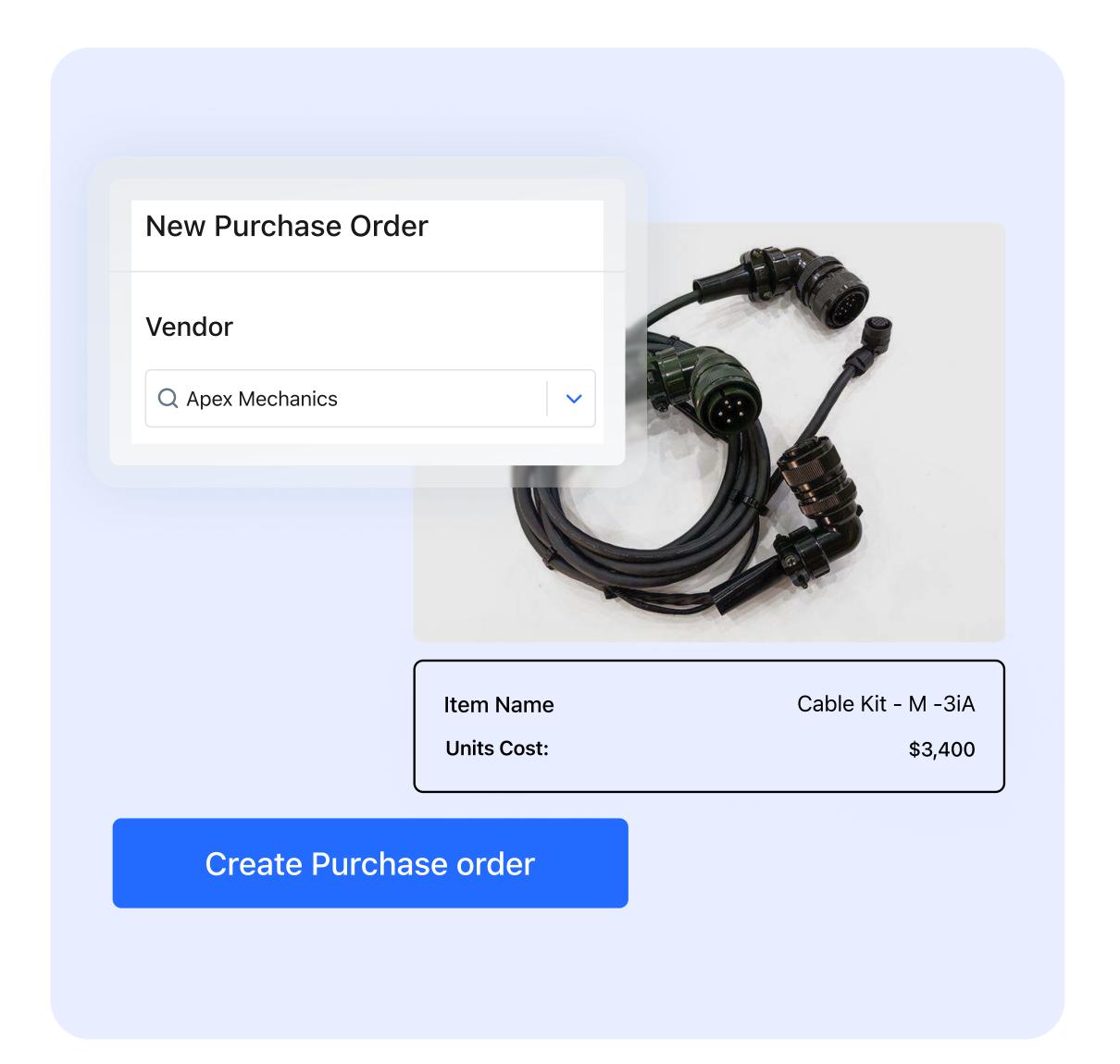
Your parts database is only useful if it's accurate. Whenever you add or remove a part or change its location, your team needs to update it. Otherwise, the database you spent hours creating will quickly be out of date.

Tying parts to work orders in a CMMS can ensure parts are removed automatically when the associated work order is completed. This gives everyone real-time visibility into whether parts are available or need to be ordered, and helps you easily stay on top of inventory.

It's also important to regularly clean up your database and verify that your digital and physical inventories match. A CMMS feature like cycle counts can help your team manage this.

"We've used MaintainX to get all our inventory logged, and we've become really disciplined at tying that inventory to work orders. Now, once a work order is complete, the software automatically removes the part tied to the work order from the inventory. This way, I always have an accurate inventory."

Greg WortmanOperations Manager at Redimix


Digitize your purchase order workflows

You can use CMMS software to define the reorder points for each part, link supplier information to your parts inventory, and trigger automatic notifications when parts reach reorder thresholds.

When you digitize your purchase order workflows to automate parts ordering based on low-inventory triggers, you help your team:

- Prioritize stocking spare parts for critical assets instead of noncritical ones.
- Calculate the risk of downtime for each asset to adequately stock parts for high-risk equipment.
- Avoid rush shipping costs by setting reorder triggers to order parts with long lead times first.

This helps you keep the right parts on the shelf, which in turn helps you avoid emergency shipping costs and get assets back online faster.

How to calculate the impact of your cost reduction efforts

Taking action to reduce costs is only half of the equation. Tracking the impact of your efforts and communicating the results across your organization is the other part of optimizing spend. This allows you to know if your strategy is working, highlight your team's value, and make informed decisions.

Here's a simple framework for tracking the impact of your strategy

Action	Result	Impact	Cost savings
Strategies you apply to reduce costs	Operational areas improved by your actions	KPIs affected by the improvements	Resulting cost savings
Created emergency BOM kits for common failures	Quicker retrieval of parts. Fewer repair delays. Better parts tracking.	Decrease in downtime and parts costs.	\$27,050

Here's an example of this tracking template in action:

Action	Result	Impact	Cost savings
Created emergency BOM kits for common failures	Quicker retrieval of parts. Fewer repair delays. Better parts tracking.	Decrease in downtime and parts costs.	\$27,050
Eliminated duplicate PMs	More efficient use of team resources and parts.	Decrease in labor costs and parts costs	\$6,600
Added QR codes to equipment	Made it easier to find repair information during breakdowns	Decrease in downtime	\$33,500
TOTAL TO DATE			\$67,150
FORECASTED ANNUAL TOTAL			\$268,600

About MaintainX

MaintainX is the leading maintenance and work execution software, designed specifically for industrial and frontline teams. It helps companies streamline maintenance operations, improve asset management, and empower workers—all while delivering insights that can improve the bottom line. As a mobile-first platform, MaintainX delivers a modern, IoT-enabled solution for over 6,500 maintenance, reliability, and operations teams.

If you're looking for a CMMS solution that's easy to use and implement, look no further. The MaintainX platform manages over 15 million work orders and 2.5 million assets and is used by hundreds of thousands of workers globally. We help customers reduce unplanned downtime and increase asset availability while meeting complex compliance needs and keeping workers safe.

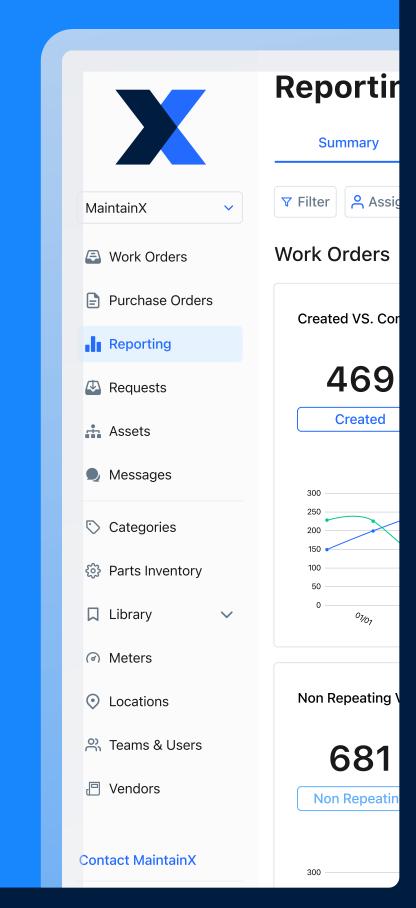
We're proud to serve some of the world's largest brands, including Duracell, AB InBev, Univar, Cintas, McDonald's, Titan America, and many more.

Ready to ditch the clipboard? Here's what MaintainX can help your team digitize:

- Maintenance Work Orders
- □ IoT & ERP Integrations
- Preventive Maintenance
- Auditing/Inspection Workflows

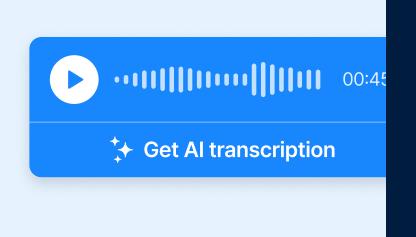
Safety Procedures

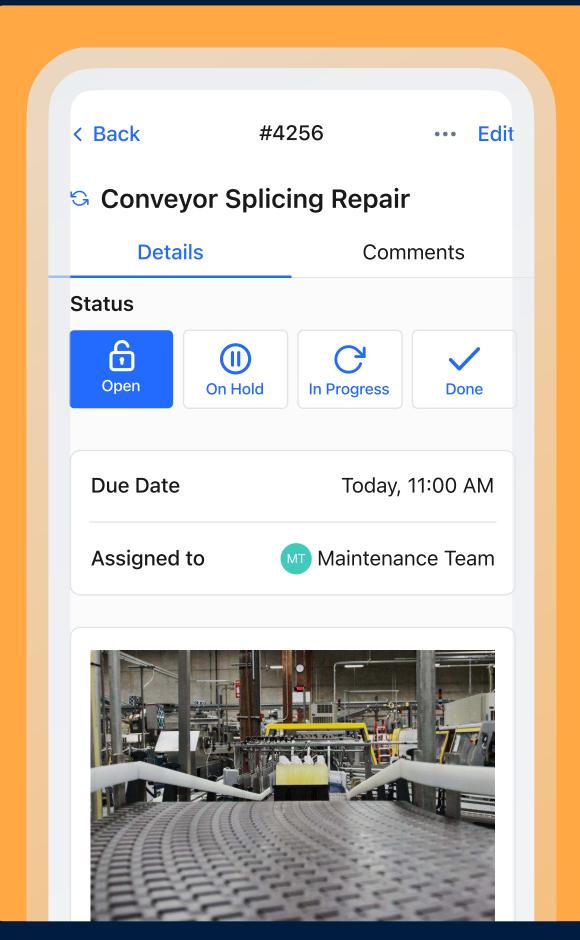
- Training Checklists
- Safety & Environmental Audits
- Parts Order Management& Vendor Connections


I Multi-Site Reporting

Maintain X

Improve asset performance


with streamlined preventive maintenance, smarter workflows, and easy-to-use tools for frontline workers


Get Started

