
Guide to
Software
Supply Chain
Security

Introduction

Software Supply Chain Security

Types of Security Scan for the
Software Supply Chain

Platform Features That Help Secure
The Software Supply Chain

About GitLab

01

02

09

11

12

Table of contents

Follow us:

1

Securing the software supply chain is too often an afterthought. However,
high-profile attacks, such as those carried out on SolarWinds and
the Colonial Pipel ine, are proving too costly to allow security to be
kicked down the road in the software development process. The U.S.
government is now demanding via an executive order that organizations
become better stewards of the software supply chain. Are you ready?

This guide will help you understand the imperative to develop strong
protection strategies early in the software development cycle, some
of the security (and DevOps) terminology you need to know, and the
tools that can help identify vulnerabilities in the software supply chain
to mitigate risk. We also have included a quiz to help you assess the
security of your software supply chain.

Introduction

https://www.youtube.com/channel/UCnMGQ8QHMAnVIsI3xJrihhg
https://www.facebook.com/gitlab
https://twitter.com/gitlab
https://www.linkedin.com/company/gitlab-com
https://about.gitlab.com/blog/2021/04/28/devops-platform-supply-chain-attacks/
https://about.gitlab.com/topics/application-security/what-is-developer-first-security/

Follow us:

2

Software supply chain security is a system of checks and balances that
kicks off in the initial stages of software development. Before your first
line of code is even written, you should be thinking about the following
precautionary steps:

•	 Who will have access to the code (internal and external parties)

•	 Who will have ownership over code approvals

•	 How you will create a chain of custody and version control

•	 The basic security steps necessary to ensure malicious code can’t
be injected into your product

•	 Mechanisms for responding if code is somehow altered by bad actors

Failing to take these steps can lead to attacks, such as ransomware
demands, that impact your organization or, worse yet, your ecosystem
of partners and customers.

You can protect the software supply chain by implementing DevSecOps
security-as-code best practices, which include the use of automation
and compliance controls, visibility into your inventory of code, integration
of multiple types of security scans into the build, test, and deploy
environments, and extension of security to your container and cloud
environments. We will dig into all these later in this guide, but first,
consider why software supply chain security is front and center today.

The SolarWinds attack
In 2020, attackers inserted malicious code into SolarWinds’ Orion Platform
that allowed them to gain entry into the internal environments of organizations
running Orion software. The highly sophisticated attack, known as SUNBURST,
is now seen as an inflection point for software development practices that
reinforced the need for all organizations to consider the security of their
software supply chain.

Software supply chain security

https://www.youtube.com/channel/UCnMGQ8QHMAnVIsI3xJrihhg
https://www.facebook.com/gitlab
https://twitter.com/gitlab
https://www.linkedin.com/company/gitlab-com
https://about.gitlab.com/blog/2020/03/12/how-to-security-as-code/
https://about.gitlab.com/blog/2020/03/12/how-to-security-as-code/
https://itwire.com/business-it-news/security/solarwinds-speaks-out,-and-software-dev-can-never-be-the-same-again.html

Follow us:

3

The colonial pipeline attack
In 2021, the Colonial Pipeline, a large fuel supplier to the East Coast of the
U.S., was attacked by hackers. Although only its billing and accounting
systems were attacked, not the operational systems, the company shut
down production and delivery for multiple days and paid a $4.4 million
ransom (in BitCoin) to prevent the release of 100 gigabytes of data.
The ransom was later recovered by the FBI but the incident revealed
how vulnerable the nation’s vital infrastructure is to attacks and how
quickly a supply chain can be impacted.

There are many more examples of hackers being able to exploit
lax security practices in software development to wreak havoc on
companies and their supply chain. No business wants to be in the
position of explaining to customers how their lack of security policies
and procedures throughout the development lifecycle led to a critical
attack.

U.S. government action on software supply
chain security
In May 2021, Pres. Joseph R. Biden, Jr., signed the Executive Order
on Improving the Nation’s Cybersecurity, which includes a section on
enhancing supply chain software security. The executive order and
the initiatives it sparked call for guidance on standards, procedures,
or criteria regarding:

•	 Who will have access to the code (internal and external parties)

•	 Who will have ownership over code approvals

•	 How you will create a chain of custody and version control

•	 The basic security steps necessary to ensure malicious code
can’t be injected into your product

•	 Mechanisms for responding if code is somehow altered by
bad actors

Impact beyond the U.S.
What the U.S. does in terms of applying better security to supply chains
will have an impact far beyond federal agencies and software vendors
that sell to them, and well past the country’s borders. Just as General
Data Protection Regulation (GDPR) reached beyond the European Union,
U.S. regulatory changes will have a similar reach back across the pond.

Speaking the same language
DevOps and Security teams must be able to communicate with one
another to begin to address the challenges of securing the software
supply chain. Below is some common terminology that will help.scipit
instru ctior,

https://www.youtube.com/channel/UCnMGQ8QHMAnVIsI3xJrihhg
https://www.facebook.com/gitlab
https://twitter.com/gitlab
https://www.linkedin.com/company/gitlab-com
https://www.npr.org/2021/06/08/1004223000/how-a-new-team-of-feds-hacked-the-hackers-and-got-colonial-pipelines-bitcoin-bac
https://www.whitehouse.gov/briefing-room/presidential-actions/2021/05/12/executive-order-on-improving-the-nations-cybersecurity/
https://www.whitehouse.gov/briefing-room/presidential-actions/2021/05/12/executive-order-on-improving-the-nations-cybersecurity/

6

Follow us:

4

5 security terms every DevOps pro should know

1. False positives can occur when vulnerability scanning identifies a
potential security flaw. Sometimes false positives are in the eye of the
beholder in that a vulnerability may be concerning to one enterprise
and totally acceptable to another. This happens because risk acceptance
thresholds are not universal. It can also happen when vulnerability
scanners lack calibration or necessary acuity.

2. Role-based access controls (RBAC) determine access to applications
and resources based upon predefined roles. People are assigned to
roles and their role determines what they can do. It’s an important part
of common controls for compliance with most regulatory requirements.
It also works hand-in-hand with zero trust. Careful RBAC management
can help protect your software supply chain.

3. Vulnerability management offers developers, project leaders and
security teams alike end-to-end situational awareness by constantly
monitoring the entire application lifecycle from development through
to deployment and production. This visibility is essential to uncover
security risks and resolve them according to security and compliance
policies. It also helps security teams improve efficiency and reduce risks
in the process. It’s somewhat analogous to Value Stream Management
used by DevOps.

4. Vulnerability scanning is a security method that inspects applications for
weaknesses that hackers could use to attack the system. A best practice
is for developers to scan their own code changes for flaws — like coding
bugs, unpatched vulnerabilities, misconfigurations and unprotected
secrets — and then fix them before hackers find and exploit any
vulnerabilities. The term “shifting left” means identifying vulnerabilities
during development when their remediation is more efficient and new
technical debt can be avoided.

5. Zero trust is a network security strategy designed to give only
authenticated and authorized users and devices access to applications
and data. When applied to modern cloud-native environments, zero trust
means protecting access from people and machines (for example, APIs),
with the assumption that hackers will infiltrate the network. It requires
thoughtful protection against lateral movement and privilege escalations.

https://www.youtube.com/channel/UCnMGQ8QHMAnVIsI3xJrihhg
https://www.facebook.com/gitlab
https://twitter.com/gitlab
https://www.linkedin.com/company/gitlab-com
https://www.youtube.com/watch?v=XnYstHObqlA
https://about.gitlab.com/handbook/security/#zero-trust

7

Follow us:

5

5 DevOps terms every security pro should know

1. Breaking changes happen when a change made in a single part of
the software system leads other parts of the system to fail, often in a
costly cascade that can lead to disruptions and time-consuming rework.
Simply put, a breaking change happens when backward compatibility is
not maintained. A weighty application development concern, breaking
changes often happen in shared code libraries accessed by multiple
applications, during security patches, and while changing or deleting
parts of an API. To avoid the problem, developers should review changes
for quality and security, be diligent with documentation, plan out API
changes, and track vulnerabilities.

2. CI pipeline automates the integration of code changes via merge/pull
requests that apply quality tests, vulnerability scans, and other common
controls such as approvals for policy exceptions. The CI pipeline is sort of
the assembly line of the software factory. Best practices will standardize
the processes and rules that are applied. Often, security teams will want
to break a pipeline when vulnerabilities are found, but development may
prefer that security non-critical flaws are just automatically captured
for later resolution.

3. Infrastructure as Code (IaC) is a way to manage and store IT infrastructure
specifications — networks, virtual machines, application environments,
etc. — as an easy-to-copy-and-distribute code file. Without IaC, managing
the infrastructure is a manual process, leading to problems with availability,
scalability and inconsistencies. A key DevOps practice, laC minimizes
environmental drift by using consistent deployment configurations.

It enables DevOps teams to test applications in production-like
environments, standardize outcomes, and lower the cost of
infrastructure management.

4. Minimum Viable Product (MVP), or Minimal Viable Change (MVC),
which is based on the idea of continuous improvement, is an agile
development methodology in which products are quickly developed with
only a minimal number of must-have features. The results are faster software
releases and avoiding time wasted on unnecessary features. MVP also
allows developers to quickly get user feedback, as well as insight into
how the features are used, which can guide future builds — all with the
least amount of time, cost, and effort. Security and automation need to
be part of this rapid iterative development.

5. Value Stream Management uses metrics, captured as byproducts of
DevOps automation, to improve efficiency, reduce bottlenecks, and get
a clearer overview of the development process. Process improvements
can be made in a methodical, data-driven manner. Advanced enterprises
will incorporate vulnerability scanning and remediation processes within
their end-to-end view of the software development lifecycle (SDLC).

https://www.youtube.com/channel/UCnMGQ8QHMAnVIsI3xJrihhg
https://www.facebook.com/gitlab
https://twitter.com/gitlab
https://www.linkedin.com/company/gitlab-com
https://docs.gitlab.com/ee/user/infrastructure/iac/

Follow us:

Tips for securing the software supply chain
A key aspect of securing anything is the use of good cyber hygiene practices.
The following are foundational to security programs of any maturity level:

•	 Strong passwords

•	 Timely application of software patches

•	 Multi-factor authentication

•	 Key rotations

•	 Secret detection

The more an organization does upfront to establish — and automate —
security standards, the easier it will be to identify anomalies or threats
and act swiftly to mitigate them.

In addition to basic security hygiene, we will cover seven tips for
improving the security of your software:

1.	 Apply common controls for security and compliance

2.	 Automate common controls and CI/CD

3.	Apply zero-trust principles

4.	 Inventory all tools and access, including IaC

5.	 Consider unconventional scans to find unconventional vulnerabilities

6.	 Secure containers and orchestrators

7.	 Generate a software bill of materials (SBOM)

1. Apply common controls for security and compliance
Achieving regulatory compliance and ensuring proper security relies
on managing control points throughout your software supply chain,
along with the visibility necessary to audit the results. For example, you must
set controls for who can make changes to code and configurations,
approve merge requests (that may have policy exceptions), and scan
applications for vulnerabilities. Some of the common controls you’ll want to
think about include:

•	 Segregation of incompatible duties

•	 Identity and access approval controls

•	 Configuration management and change control

•	 Access restrictions for changes to configurations and pipelines

•	 Protected branches and environments

•	 Auditing

•	 Licensed code usage

•	 Security testing

When it comes time for an audit, you’ll need to have a way to see who changed
what, where, and when — as well as who reviewed, approved, and merged
it — along the entire software development lifecycle. Auditors should be
able to check the compliance of every audit event in your logs or you should
be able to prove that you have an automated process in place that satisfies
the requirements.

2. Automate common controls and CI/CD
Automating policies for common controls helps you ensure more consistent
compliance, reduce your audit surface, and more easily prove compliance
to auditors. One popular way to do this is by automating CI/CD to apply
common controls.

6

https://www.youtube.com/channel/UCnMGQ8QHMAnVIsI3xJrihhg
https://www.facebook.com/gitlab
https://twitter.com/gitlab
https://www.linkedin.com/company/gitlab-com
https://docs.gitlab.com/ee/user/project/merge_requests/approvals/rules.html#merge-request-approval-segregation-of-duties
https://docs.gitlab.com/ee/user/project/merge_requests/approvals/rules.html
https://docs.gitlab.com/ee/push_rules/push_rules.html
https://docs.gitlab.com/ee/user/project/merge_requests/approvals/rules.html#editing--overriding-approval-rules-per-merge-request
https://docs.gitlab.com/ee/user/project/protected_branches.html
https://docs.gitlab.com/ee/administration/audit_events.html
https://docs.gitlab.com/ee/user/compliance/license_compliance/#license-compliance
https://docs.gitlab.com/ee/user/application_security/

Follow us:

For example, security scanning for vulnerabilities is a common control you
can automate. First, determine which projects or applications you want
 to require scans on and what the policies for those scans will be. Hope-
fully, your policies will require using more than one type of scan. CI tem-
platves can be used to ensure automated scans are consistently applied.
Without automation in place, it’s all too easy to end up doing scans less
frequently than you planned and let a vulnerability go too long and too far
into the software supply chain without being remediated.(See page 9 for
more on the types of security scans available.)

3. Apply zero-trust principles
Zero trust is an approach that assumes that hackers are going to get inside
your network and focuses on protection from the inside rather than just the
perimeter. Embracing this perspective can protect you from lateral attacks
where hackers find an easy way in that may be a low-value asset but use
privilege escalation and advanced techniques to reach mission-critical
apps and data.

The modern software era relies upon so much more than application code
and the network, which makes zero-trust principles a necessity. Today’s
complexities include APIs, secrets, containers, orchestrators, cloud
services, templates, and other tools that your development team uses.
All of these provide additional attack surfaces. If an attacker exploits
misconfigurations of one of these elements of your software supply chain,
they may move laterally across applications, clusters, and environments.

Here are some key ways zero-trust principles help you secure your
software supply chain:

•	 Lateral movement becomes more difficult because each service
has to be authenticated

•	 Protection is consistently applied for both human access and machine
access (such as APIs)

•	 Stolen credentials are less valuable.

•	 Non-targeted attacks are less successful

•	 Role-based access prevents threats from malicious or simply
careless insiders

4. Inventory all tools and access, including IAC
First, you’ll want to inventory anything your development team is using that
could be a point of entry or new attack surface — from code repositories
to APIs, containers, orchestrators, artifacts, templates, and all your build
tools. In many organizations, the security team isn’t aware of a lot of the
tools that are being used, and you can’t make something more secure if
you don’t know it’s there.

Once development and security teams are on the same page, it’s time to
re-examine all your access controls. Certainly, take a look at typical things
like your network and endpoints, but keep going until you’ve covered all
points of entry along your software supply chain. For instance, consider
who can change IaC templates. Containers are used to stand up new
projects quickly. If they are not scanned, security flaws can be quickly
replicated across projects. Be sure to scan containers and monitor the
behavior of APIs and orchestrators. For some ideas, check out the
National Institute of Standards (NIST) Secure Software Development
Framework (SSDF).

5. Consider unconvetional scans to find unconventional vulnerarabilities
Conventional scans, like static analysis, dynamic analysis, secret detection,
dependency scanning, and container scanning, will help you find Common
Vulnerabilities and Exposures (CVEs), or vulnerabilities with a known signature.
But vulnerabilities that don’t have known signatures or are unique to your
environment could also expose the organization to a breach or attack.

7

https://www.youtube.com/channel/UCnMGQ8QHMAnVIsI3xJrihhg
https://www.facebook.com/gitlab
https://twitter.com/gitlab
https://www.linkedin.com/company/gitlab-com
https://csrc.nist.gov/projects/ssdf
https://csrc.nist.gov/projects/ssdf

The line between what is a security flaw and what is a logic flaw can be thin
— and won’t matter if the flaw is exploited.

For unknown vulnerabilities, fuzz testing can be especially helpful.
There’s coverage-guided fuzz testing, API fuzz testing, and protocol
fuzz testing, and they allow you to find insecure logic flaws that do
not have a signature of a known CVE. To help shift this security check
earlier in the software development lifecycle, it’s a good idea to add
fuzz testing within your CI pipeline right alongside other security scan
types. (See page 9 for more on fuzz testing.)

Other ways to find unknown vulnerabilities in your applications include:

•	 Monitoring for stability and reliability issues, which can lead to
exploitable vulnerabilities

•	 Confirming reproducibility to minimize false positives and identify
root cause analysis

The goal is to test wider and deeper so you can maximize your testing
coverage and reduce your overall risk.

6. Secure containers and orchestrators
Protecting your software’s infrastructure in production — like Docker
containers and Kubernetes — is an important piece of securing your
software supply chain. To keep things secure and compliant, you’ll
want to apply many of the same common controls in code creation,
testing and deployment to your container infrastructure as well.

Make sure you include container scanning to find any known
vulnerabilities in your container images. If you’re using Kubernetes,
you’ll also want to scan your Helm charts, and you can do that with
static application security testing (SAST).

Apply zero-trust principles and work to limit lateral movement among your
containers. You can create a policy that blocks east-west traffic, so pods
will only be allowed to communicate with certain other pods.

Also, think about more obscure things like the container registry and who
has write access in your organization. A compromise of one person could
potentially lead to a compromise of the container registry, which could lead
(via pipelines) to compromises of numerous projects.

7. Automate SBOM generation
A software bill of materials (SBOM) is a list of all the components in a
codebase — essentially a list of the ingredients that make up your software.

By automating SBOM generation, you can avoid lengthy manual processes
to confirm that malicious software is not packaged within your software.
Automating SBOM generation will provide insights into dependencies
across transient structures from package managers and containers.
Developers will be able to expedite remediation activities when SBOM
vulnerabilities are displayed in the UI.

To further increase usability and adoption, reduce the number of tools used
for reviewing and processing SBOMs. Utilizing SBOM in an end-to-end
secure platform helps to protect from multiple attacks, including protection
for internal code, external sources, and even the build process.

8

Follow us:

https://www.youtube.com/channel/UCnMGQ8QHMAnVIsI3xJrihhg
https://www.facebook.com/gitlab
https://twitter.com/gitlab
https://www.linkedin.com/company/gitlab-com

Follow us:

9

Security scans provide a way for teams to get visibility into the health and
safety of the software supply chain. When it comes to security scanning,
the more scans, the better. Security pros call this Defense in Depth. Each
scan type can find different types of vulnerabilities. No one scan type is
sufficient on its own.

Here are some common security scans, each of which provides distinct
and critical information about the software being changed or surrounding
code upon which it relies:

Container scanning
Container images may be based on images with vulnerabilities or simply
have vulnerabilities on their own. Either way, it’s key to analyze your
containers for known security vulnerabilities alongside other security
scans automated in your CI pipeline.

DAST
Dynamic application security testing (DAST) analyzes your running web
application for known runtime vulnerabilities. DAST happens during the
QA stage and can be run within the CI pipeline before a merge when
using a review app, or used outside of a pipeline to continuously monitor
live applications. DAST can find things like cross-site scripting errors or
broken authentication issues.

Dependency scanning
Some experts suggest software dependencies can actually be an application’s
largest area of vulnerability. So scans that analyze external dependencies
(for example, libraries like Ruby gems or Apache) for known vulnerabilities
on each code commit are critical. Dependency scans can run while
applications are being developed and tested and are an ideal solution for
teams using open source libraries. A dependency scanner should look at
all vulnerabilities, including nested or transitive dependencies.

Fuzz testing
Fuzz testing offers what no other security scan does: iIt “pings” an application
with unexpected or even “malformed” data in an effort to get it to crash,
thus measuring the stability of the application. There are two types of fuzz
testing: Coverage-guided fuzzing, which looks at the source code while
an application is running, and behavioral fuzzing, which tries to bring out
the differences between how an application actually works versus how
it is expected to work. Fuzz testing is a great choice for teams looking to
unearth previously unknown vulnerabilities and logic flaws.

Types of security scans for the software supply chain

https://www.youtube.com/channel/UCnMGQ8QHMAnVIsI3xJrihhg
https://www.facebook.com/gitlab
https://www.linkedin.com/company/gitlab-com
https://about.gitlab.com/topics/devsecops/beginners-guide-to-container-security/
https://about.gitlab.com/topics/devsecops/beginners-guide-to-container-security/
https://www.youtube.com/embed/9tIrrByOum4
https://about.gitlab.com/blog/2021/10/27/how-were-using-dast2-for-easier-scan-configuration/
https://owasp.org/www-project-dependency-check/
https://owasp.org/www-project-dependency-check/
https://about.gitlab.com/blog/2021/10/27/how-were-using-dast2-for-easier-scan-configuration/
https://www.youtube.com/embed/4ROYvNfRZVU

2

License compliance
An increasing reliance on open source code means teams need to be
able to easily track license compliance. When code is committed,
project dependencies should be searched for approved licenses as well
as any licenses that have been disallowed by an organization’s general
policies. While less of a security issue, ensuring proper license usage
can avoid the risk of non-compliance.

SAST
Static application security testing (SAST) scans the application source
code and binaries to check for weaknesses and vulnerabilities.
SAST scans are run before code is deployed and can find dangerous
attributes in a class or other unsafe code. Ideally, SAST results should
be easily and regularly available to developers within their existing
workflows (such as in their pipeline) so necessary changes to code
can be made as the code is being worked on. Contextual results are
vital if teams want developers to take on increased ownership of code
safety and can greatly improve the efficiency of remediations.

Secret detection
It can be a simple matter for a developer to unintentionally include
sensitive data like passwords, tokens, and other credentials in a remote
repository. Checking for these secrets in code commits and in project
histories allows teams to proactively resolve these issues before anything
sensitive is improperly disclosed.

Follow us:

10

https://docs.gitlab.com/ee/user/application_security/sast/
https://www.youtube.com/channel/UCnMGQ8QHMAnVIsI3xJrihhg
https://www.facebook.com/gitlab
https://twitter.com/gitlab
https://www.linkedin.com/company/gitlab-com

Follow us:

11

Securing the software supply chain requires access to certain tools that
security teams typically use to identify and prioritize risks as well as
create an audit trail. To ensure your software is being properly monitored,
make sure your DevOps platform has these features:

Security dashboard
A security dashboard lets you know the number of vulnerabilities that
were introduced over time. For instance, after you run a security scan,
the detected vulnerabilities should automatically be displayed in the
dashboard. Dashboards should be able to be customized so that
departments, teams, and individuals can easily see the vulnerabilities
in their projects. Vulnerabilities also should be labeled according to
their severity levels.

Vulnerability management
Vulnerability management lets you dive deeper into the information that
appears on the security dashboard. With so many moving parts, it’s critical
to have a comprehensive plan to deal with vulnerabilities. Teams need to
be able to see the problem areas, triage them for severity/threat status,
be able to note trends, and then track the status and remediate or resolve
the vulnerabilities. A solid plan and the correct tools will give teams full
visibility into an organization’s risk and can unite developers and security
around a common view.

You should be able to sort and filter vulnerabilities by characteristics such as
severity, status, and the type of scan performed. Without moving to another
tool, the reporting should show if there has been activity on the vulnerability
— for instance, whether an issue has been created to resolve it, a developer
has been assigned, or it has a targeted completion date. Also, if it’s been
dismissed, why and by whom.

Audit logs and audit events
Audit logs and events offer detailed information about what types of changes
were made on the system, when, and by whom. For example, audit events should
show if a vulnerability check or license check was added, or if a group was
added or removed. If a policy stops the build and an exception is approved,
audit logs will show who approved the exception. This comprehensive audit
trail can greatly simplify an audit, while also expediting root cause analysis
following a breach.

Dependency lists
A dependency list shows all the code dependencies throughout the
software so that if a vulnerability is detected, you know the extent of its
reach and impact. You should be able to drill down and see what file or
files the dependency is in as well as what licenses it is associated with.

Platform features that help secure the software supply chain

Test your software supply chain security
readiness
In just nine questions you can see how your team ranks!
Take our two-minute quiz here and be directed to security
content designed for what you’re experiencing today.

https://www.youtube.com/channel/UCnMGQ8QHMAnVIsI3xJrihhg
https://www.facebook.com/gitlab
https://twitter.com/gitlab
https://www.linkedin.com/company/gitlab-com
https://about.gitlab.com/handbook/engineering/security/vulnerability_management/
https://about.gitlab.com/blog/2022/09/06/test-your-software-supply-chain-security-know-how/

Follow us:

12

GitLab is The One DevOps platform for software innovation. As The
One DevOps Platform, GitLab provides one interface, one data store,
one permissions model, one value stream, one set of reports, one spot
to secure your code, one location to deploy to any cloud, and one place
for everyone to contribute. The platform is the only true cloud-agnostic
end-to-end DevOps platform that brings together all DevOps capabilities
in one place.

With GitLab, organizations can create, deliver, and manage code quickly
and continuously to translate business vision into reality. GitLab empowers
customers and users to innovate faster, scale more easily, and serve and
retain customers more effectively. Built on Open Source, GitLab works
alongside its growing community, which is composed of thousands of
developers and millions of users, to continuously deliver new DevOps
innovations.

About GitLab

https://www.youtube.com/channel/UCnMGQ8QHMAnVIsI3xJrihhg
https://www.facebook.com/gitlab
https://twitter.com/gitlab
https://www.linkedin.com/company/gitlab-com

