v GitLab

Ultimate Guide
to CI/CD

From fundamentals to integrating
security tests and Al

O O O

Table of Contents

/03/

/04/

/06/

/08/

/09/

/168/

/11/

/12/

Introduction

Cl/CD fundamentals

The benefits of CI/CD in modern software development

Key differences between CI/CD and traditional development
Best practices for CI/CD implementation and management
Integrating SCM and CI/CD

Enhancing CI/CD with Al

How to get started with CI/CD

Introduction

Continuous integration/continuous delivery (CI/CD) has revolutionized how software teams work together
to turn code into applications. Gone are the days of code integration headaches and repeated manual
processes. ClI/CD makes modern software development possible — fast, reliable, and automated.

At its core, CI/CD is about creating a seamless pipeline that takes code from a developer's environment all
the way to production and incorporates feedback in real time. Cl helps teams catch issues early — before
they become costly problems — by ensuring that code changes are frequently merged into a shared
repository, automatically tested, and validated. CD extends this by automating deployments, making
releases predictable and stress-free.

Rather than relying on manual processes and complex toolchains for software development, teams can
use a robust CI/CD pipeline to build, test, and deploy software. And Al can streamline the process even
further, automatically engineering CI/CD pipelines for consistent quality, compliance, and security checks.

The result is higher quality software, faster delivery times, and more frequent releases that can quickly
respond to user needs and market demands.

This guide explains modern CI/CD pipelines, from basic principles to best practices to advanced
strategies. What you learn in this guide will help you scale your DevSecOps environment to develop and
deliver software in an agile, automated, and efficient manner.

With continuous
Integration, teams

can identify and fix
errors and security
Issues more easily
and much earlier in
the development
Process.

Cl/CD fundamentals

What is continuous integration?

Continuous integration (Cl) is the practice of integrating all your
code changes into the main branch of a shared source code
repository early and often, automatically testing changes when
you commit or merge them, and automatically kicking off a build.
With continuous integration, teams can identify and fix errors and
security issues more easily and much earlier in the development
process.

What is continuous delivery?

Continuous delivery (CD) — sometimes called continuous
deployment — enables organizations to deploy their applications
automatically, allowing more time for developers to focus

on monitoring deployment status and ensure success. With
continuous delivery, DevSecOps teams set the criteria for code
releases ahead of time. When those criteria are met and validated,
the code is deployed into the production environment. This allows
organizations to be more nimble and get new features into the
hands of users faster — and know their deployments passed all
their security tests.

What is a CI/CD pipeline?

A CI/CD pipeline is a series of steps, such as build, test, and deploy, that
automate and streamline the software delivery process. Each stage serves
as a quality gate, ensuring that only validated code moves forward. Early
stages typically handle basic checks like compilation and unit testing, while
later stages may include integration testing, performance testing, compliance
testing, and staged deployments to various environments.

O
The pipeline can be configured to require manual approvals at critical points, B
such as before deploying to production, while automating routine tasks and —O- Test
providing quick feedback to developers about the health of their changes. This Review Staging Production
structured approach ensures consistency, reduces human error, and provides S Unit test
a clear audit trail of how code changes move from development to production. </> e —(o o ‘o N0 Ho mm——— @ — B —— (g
Modern pipelines are often implemented as code, allowing them to be version Build Integration tests "
controlled, tested, and maintained just like application code. Code

Cl Pipeline CD Pipeline

These are other terms associated with CI/CD that are important to know: 0

o Commit: A code change.

e Job: Instructions a runner has to execute. Related code

e Runner: An agent or server that executes each job individually that can spin
up or down as needed.

o Stages: A keyword that defines certain job stages, such as “build” and
“deploy.” Jobs of the same stage are executed in parallel. Pipelines are
configured using a version-controlled YAML file, .gitlab-ci.yml, at the root
level of a project.

The benefits of CI/CD in modern software development

CI/CD brings transformative benefits to modern software development by dramatically reducing the time and
risk associated with delivering new features and fixes. The continuous feedback loop gives DevSecOps teams
confidence that their changes are automatically validated against the entire codebase.

Perhaps most importantly, CI/CD fosters a culture of collaboration and transparency within software
development teams. When everyone can see the status of builds, tests, and deployments in real time, it
becomes easier to identify and resolve bottlenecks in the delivery process. The automation provided by Cl/
CD also reduces the cognitive load on developers, freeing them to focus on writing code rather than managing
manual deployment processes. This leads to improved developer satisfaction and productivity, while also
reducing the risk traditionally associated with the entire software release process. Teams can experiment more
freely knowing rapid code reviews are part of the process and they can quickly roll back changes if needed,
which encourages innovation and continuous improvement.

Here are some of the key benefits of CI/CD:

More frequent deployments. Teams can safely deploy smaller
changes more frequently, reducing the risk and complexity
associated with large, infrequent releases. This enables faster
feedback cycles and more responsive development.

Faster time to market. Automated build and deployment processes
enable rapid delivery of new features and bug fixes to customers,
significantly reducing the time between writing code and releasing
it to production.

Faster testing. By automatically running tests on code changes
and executing multiple test suites simultaneously across different
environments, CI/CD significantly reduces testing time compared
to sequential or manual approaches.

Improved code quality. With automated testing throughout the
development process, bugs are caught as they arise and rolled
back without ever making it into the main branch. This ensures

better code quality overall and that every release works just as

intended.

Faster recovery. CI/CD makes it easier to fix issues and recover
from incidents, reducing mean time to resolution (MTTR).
Continuous deployment practices mean frequent small software
updates so when bugs appear, it's easier to pin them down.
Developers have the option of fixing bugs quickly or rolling back the
change so that the customer can get back to work quickly.

Simpler compliance and audits. Compliance tasks can be
incorporated into the development lifecycle, reducing the risk of
releasing non-compliant applications. And CI/CD systems maintain
detailed records of all builds, tests, and deployments, giving you

a comprehensive audit trail that makes it easier to troubleshoot
issues, maintain compliance requirements, and complete audits.

Less context switching. Getting real-time feedback on their code
makes it easier for developers to work on one thing at a time and
minimizes their cognitive load. By working with small sections of
code that are automatically tested, developers can debug code
quickly while their minds are still fresh from programming. Finding
bugs is easier because there's less code to review.

Consistent processes. Cl/CD pipelines create a standardized
process for integrating and deploying code, which makes it easier
for teams to collaborate, onboard new developers, reduce risk, hit
key release dates, and ultimately, deliver better software faster.

Happier (and more productive) developers. With more of the
deployment process automated and less context switching, the
team has time for projects that are more rewarding — to the
developer and their organization.

Happier users and customers. With fewer bugs making it into
production, and new features and bug fixes coming out faster

and more often, it becomes much easier to improve customer

satisfaction and retention — and win new customers.

Key differences between CI/CD and traditional development

CI/CD differs from traditional software development in many ways, including:

</

<

Frequent code commits

Developers often work independently and
infrequently upload their code to a main codebase,
causing merge conflicts and other time-consuming
issues. With CI/CD, developers push commits
throughout the day, ensuring that conflicts are
caught early and the codebase remains up to date.

Reduced risk

Lengthy testing cycles and extensive pre-release
planning are hallmarks of traditional software
development. This is done to minimize risk but often
hinders the ability to find and fix problems. Risk is
managed in CI/CD by applying small, incremental
changes that are closely monitored and easily
reverted.

8

<

Automated and continuous testing

In traditional software development, testing is done
once development is complete. However, this causes
problems, including delayed delivery and costly bug
fixes. CI/CD supports automated testing that occurs
continuously throughout development, sparked

by each code commit. Developers also receive
feedback they can take fast action on.

Automated, repeatable, and frequent deployments
With CI/CD, deployments are automated processes
that reduce the typical stress and effort associated
with big software rollouts. The same deployment
process can be repeated across environments, which
saves time and reduces errors and inconsistencies.

Best practices for CI/CD implementation and management

How successful you are with CI/CD depends greatly on the best practices you implement.

e Commit early, commit often. e Understand the best continuous delivery is done with

minimal tools.
o Optimize pipeline stages.

e Track what's happening so issues and merge requests don't

o Make builds fast and simple. get out of hand.

» Usefailures to improve processes. o Streamline user acceptance testing and staging with

e Make sure the test environment mirrors production. automation.

e Make sure to integrate with your source code management * Manage the release pipeline through automation.

(SCM) system. Implement monitoring for visibility and efficiency.

» Start where you are —you can always iterate. « Begin experimenting with Al to make your process more

efficient and secure.

Let's dive deeper into a few of these best practices.

Integrating SCM and CI/CD

Source code management (SCM) and CI/CD form the foundation
of modern software development practices. SCM systems like
Git provide a centralized way to track changes, manage different
versions of code, and facilitate collaboration among team
members, all while maintaining a stable main branch that always
contains production-ready code.

CI/CD takes the code managed by SCM systems and builds,
tests, and validates it. If the SCM system and CI/CD tool are
tightly integrated — or, ideally, part of the same DevSecOps
platform — this happens automatically. When a developer
submits their code changes, the CI/CD system automatically
retrieves the latest code, combines it with the existing codebase,
and runs through a series of automated checks. These typically
include compiling the code, running unit tests, performing static
code analysis, and checking code coverage. If any of these steps
fail, the team is immediately notified, allowing them to address
issues before they impact other developers or make their way to
production.

This tight integration between source control and continuous
integration creates a feedback loop that helps maintain code
quality, makes it easier to fix security vulnerabilities, and prevents
integration problems from accumulating. It also enhances
productivity and speeds up the development process.

With separate SCM and CI/CD tools or ones that aren't tightly
integrated, developers must constantly switch between them,
manually triggering builds after commits and copying build
information back into merge requests. This context switching
increases the likelihood of human error and creates gaps in
traceability between code changes and deployments. The lack of
integration also makes it harder to implement automated policies
that span the entire software development lifecycle, forcing teams
to create custom scripts or webhooks to bridge the gap between
systems. When troubleshooting issues, developers must piece
together information from multiple disconnected tools, making it
more time-consuming to understand what went wrong and where
in the pipeline a failure occurred.

“Thigitight integration
petween source control
and continuous integration
creates a feedback loop
that helps maintain code
quality, makes it easier to
fix security vulnerabilities,
and prevents integration
problems from
accumulating.”

Enhancing CI/CD with Al

ol

Al can go a step further and enhance CI/CD processes in several ways across the entire development 0101011
lifecycle. \ 011010

One key way organizations are using Al is to troubleshoot issues in their CI/CD pipelines. Instead of
digging through job logs, error messages, and execution traces to try to determine why a CI/CD job
failed, developers can use Al to determine the root cause and suggest a fix.

Developers can also use Al to help them understand, prioritize, and remediate security issues and
vulnerabilities that are detected in their code. When a security scan in their CI/CD pipeline detects an
issue, Al can summarize the vulnerability, give examples of how it could be exploited, and suggest a fix,
complete with the necessary code to address the vulnerability.

On its own, CI/CD is a powerful way to ship better software faster. With Al, you can make your software
delivery process even more efficient and secure.

How to get started with CI/CD

Getting started with CI/CD begins with identifying a simple but representative project to serve as your pilot. Choose a
straightforward application with basic testing requirements, as this allows you to focus on learning the pipeline mechanics
rather than dealing with complex deployment scenarios. Begin by ensuring your code is in version control and has some
basic automated tests — even a few unit tests will suffice. The goal is to create a minimal pipeline that you can gradually
enhance as your understanding grows.

For GitLab specifically, the process starts with creating a .gitlab-ci.yml file in your project’s root directory. This YAML file
defines your pipeline stages (basic ones like build, test, and deploy) and jobs. A simple pipeline might look like this: the
build stage compiles your code and creates artifacts, the test stage runs your unit tests, and the deploy stage pushes your
application to a staging environment. GitLab will automatically detect this file and start running your pipeline whenever
changes are pushed to your repository. The platform provides built-in runners to execute your pipeline jobs, though you can
also set up your own runners for more control.

As you become comfortable with the basics, gradually add more sophisticated elements to your pipeline. This might include
adding code quality checks, security scanning, or automated deployment to production. GitLab's DevSecOps platform
includes features like compliance management, deployment variables, and manual approval gates that you can incorporate
as your pipeline matures. Pay attention to pipeline execution time and look for opportunities to run jobs in parallel where
possible. Remember to add proper error handling and notifications so team members are promptly alerted of any pipeline
failures. Start documenting common issues and solutions as you encounter them — this will become invaluable as your team
grows.

Get started with GitLab CI/CD.

Sign up for GitLab Ultimate and try the Al-powered
DevSecOps platform free for 60 days.

Learn more

13

About GitLab

GitLab is the most comprehensive Al-powered DevSecOps Platform for
software innovation. GitLab provides one interface, one data store, one
permissions model, one value stream, one set of reports, one spot to
secure your code, one location to deploy to any cloud, and one place
for everyone to contribute. The platform is the only true cloud-agnostic
end-to-end DevSecOps platform that brings together all DevSecOps
capabilities in one place.

With GitLab, organizations can create, deliver, and manage code quickly
and continuously to translate business vision into reality. GitLab empowers
customers and users to innovate faster, scale more easily, and serve and
retain customers more effectively. Built on open source, GitLab works
alongside its growing community, which is composed of thousands of

developers and millions of users, to continuously deliver new innovations.

& GitLab

https://about.gitlab.com/free-trial/devsecops/?utm_medium=pdf&utm_source=pathfactory&utm_campaign=eg_global_cmp_gated-content_x_en_guidecicd
https://about.gitlab.com/free-trial/devsecops/?utm_medium=pdf&utm_source=pathfactory&utm_campaign=eg_global_cmp_gated-content_depflex_en_guidecicd

