€5 Predibase

Complete Guide:

Reinforcement
Fine-Tuning

An intro to reasoning models, when to use RFT vs SFT, and best
practices for using RFT in production

Table of
Contents

. Reinventing Al with DeepSeek-R1

and Reinforcement Learning

. Why Reinforcement Fine-Tuning

Outperforms Supervised Fine-
Tuning

. Accelerating Reasoning Models

with Turbo LoRA

. Tutorial: Using RFT to Write CUDA

Kernels

. What'’s Next: Key Takeaways and

Getting Started with RFT

Al is no longer a static endeavor—models can evolve and adapt even after
deployment. A prominent driving force behind this shift is reinforcement
learning (RL). Traditional machine learning approaches are more static, relying
heavily on supervised learning that demands enormous amounts of labeled
datasets. These large labeled datasets are used to train models to memorize
specific facts and patterns, but what happens when data is thin? Enter
Reinforcement Fine-Tuning (RFT), a new technique that harnesses the power of
RL to fine-tune pre-trained language models to think for themselves.

In this guidebook, you'll learn:

e How DeepSeek-R1 challenged conventional Al wisdom by self-improving
and surpassing established models.

e Why RFT often outperforms supervised fine-tuning, especially when data is
scarce.

e How Turbo LoRA accelerates reasoning models to make production serving
in production more practical.

e A hands-on tutorial showing how to apply RFT to generate CUDA kernels—
one of the most technical and challenging coding tasks.

Combining real-world insights with hands-on tutorials, we’ll show you how to
build Al systems that don’t just learn—they continuallylearnin an iterative,
reward-driven manner. Prepare to explore how RFT is unlocking new frontiers
in LLMs and beyond.

with DeepSeek
and

Reinforcement
Learning

The Self-Improvement Paradigm

Reinforcement learning introduced a feedback-driven mechanism for training
Al. Rather than relying on a massive set of labeled examples, RL agents learn by
exploration and reward:

e Exploration: The model attempts multiple strategies or actions to solve a
task.

e Reward: Each action yields some reward signal (positive or negative), which
guides the model’s future choices.

This approach is transformative because it aligns more closely with how
humans naturally learn—through trial, error, and continuous feedback—and
opens the door to continual learning and deeper reasoning capabilities. In RL,
the “environment” can be a game, simulation, logic problem or even a text-
based generation task—any context where feedback signals can guide the
model to a correct response.

The Significance of DeepSeek-R1
in Modern Al

DeepSeek-R1 exemplifies how a model can be designed to reason. Instead of
passively ingesting training data, DeepSeek-R1 performs active exploration:

e Adaptive Reward Structures: The team behind DeepSeek-R1 designed
multiple reward functions—some focused on accuracy, others on efficiency
or creativity. The model then learned to balance these objectives and learn
different strategies for solving complex problems.

e |terative Refinement: Each iteration of training involved not just
backpropagation of errors but a reward-based feedback loop that
emphasized what worked best in practice.

e Breaking Performance Barriers: By continuously learning from outcomes,
DeepSeek-R1 was able to outperform traditional LLMs.

Perhaps the biggest contribution of DeepSeek-R1 is the fact that it's open-
sourced. By sharing its weights and training approach, the team behind
DeepSeek made it possible for engineering teams to train and customize their
own reasoning models. Prior to the release of DeepSeek-R1, OpenAl’s closed-
source O1 model was pretty much the only reasoning model engineers could
get their hands on and the weights were certainly not available for deeper
inspection.

Comparing DeepSeek-R1to
Traditional Models

Typically, traditional models train once on a static dataset and then freeze their
parameters upon deployment. In contrast, DeepSeek-R1.:

e Learns dynamically, responding to changes in task requirements or data
distributions.

e Requires far fewer explicitly labeled data points because it learns from
rewards. A reasoning model can be fine-tuned with as little as 10 rows of
example data and provide incredible results—more on that later.

e Minimizes the risk of stagnation—a phenomenon where models plateau due
to lack of new, high-quality labeled data.

The key takeaway: Deepseek-R1’s success hints at a future where “one-and-
done” training is a relic of the past. Continuous learning is quickly becoming the
de factostandard for high-stakes Al applications.

Reinforcement
Fine-Tuning vs.
Supervised Fine-
Tuning

What is Reinforcement Fine-
Tuning (RFT)?

For years, Reinforcement Learning (RL) and fine-tuning belonged to completely
different worlds. On one hand, fine-tuning is all about supervised learning: you
train a model on labeled data, and it learns to predict the correct outputs for
given inputs. On the other hand, RL focuses on decision-making in dynamic
environments: an agent interacts with its surroundings, gets feedback
(rewards), and adapts based on trial and error. Enter Reinforcement Fine-
Tuning (RFT), a new twist on applying RL principles to fine-tuning tasks.

Reinforcement Fine-Tuning (RFT) combines the strengths of fine-tuning a pre-
trained LLM—Ilike the open-source Llama series from Meta—with the iterative,
feedback-driven nature of RL. The core ideais to:

1. Start with a pre-trained model that already has a solid grasp of general
knowledge.

2. Define a reward function encapsulating your target metrics (e.g.,
correctness, user satisfaction, computational efficiency).

3. lteratively fine-tune this model using RL techniques such as policy
gradients, Q-learning, or other advanced algorithms.

This approach enables you to customize open-source LLMs with little-to-no
data and turn them into powerful reasoning models for your specific task—like
building an Al copilot for an internal codebase.

Comparing RFT vs. SFT

Reinforcement fine-tuning sounds like a game-changer, but how does it differ
from Supervised Fine-tuning? Let’s take a look:

Data
Requirements

Adaptability

Exploration

Performance
Progress

Learns from a reward
signal; minimal labeled
data needed

Improves continuously
as new data or scenarios
appear

Actively tries new
strategies, guided by
rewards

Can keep improving as
reward mechanism
evolves

Needs large labeled
datasets for best results -
typically 1,000+ rows

Improvement is mostly
limited to the scope of the
labeled data

Relies on fixed examples,
no inherent exploration
mechanism

Typically reaches a plateau
once labeled data has been
maximally leveraged

RFT Wins When Data is Scarce

Reinforcement Fine-Tuning (RFT) goes beyond Supervised Fine-Tuning (SFT) by
removing the need for labeled data, relying instead on an objective measure of
correctness. With only a few dozen examples, SFT often overfits (memorizing
data rather than learning general patterns), while RFT can learn robust
strategies and resists overfitting. However, once dataset sizes reach 100k+
examples, RFT slows down, and SFT generalizes better.

Example use cases where RFT shines:

e Code Transpilation: Oftentimes, code conversion tasks (e.g., Java to Python)
lack abundant mapping data. RFT is well-suited to these scenarios because
you can evaluate the correctness of the generated code. For instance, in
Java-to-Python conversion, you can run the generated Python code on test
cases and verify that its outputs match those of the original Java program.

e Game Strategy: Games like Chess and Wordle are straightforward when it
comes to verifying outcomes (win/loss), but hard to label every move as
correct or incorrect. RFT can learn effective strategies using only the
win/loss signal.

e Medical Diagnosis: RFT is a good fit because it learns from feedback at each
decision point, much like a doctor refining their intuition. It explores various
diagnostic actions (such as ordering tests), and adapts based on outcomes
or new information, steadily improving its accuracy over time.

When to Use Reinforcement Fine-
Tuning vs. Supervised Fine-Tuning

Deciding whether to use RFT or SFT depends on your data availability, task
complexity, and performance goals. Below is a decision flowchart to help teams

determine the right approach:

5 Predibase

Do you have labeled
(ground truth) data?

<100

Is the task examples

“verifiable”?

>100k
examples

<100k examples

Does CoT/
reasoning help?

Performance

Benchmarks:
RFT vs.SFT

Example 1: The Countdown Game

To explore how RFT and SFT compare at different scales, we ran experiments
on the Countdown game with dataset sizes of 10, 100, and 1,000 examples.

Key Findings

e With just 10 examples, RFT improved the base model’s chain-of-thought
performance by 18%.

e With 100 examples, that improvement jumped to 60%.

e SFT, onthe other hand, performed poorly across all dataset sizes—likely due
to memorizing specifics rather than building robust patterns.

The chart on the following page shows our results. Here is additional context
for ourvarious experiments as represented on the X-axis.

e 0examples: O-shot prompting, with no demonstrations provided.

e 10 & 100 examples: These same examples were also used for in-context
learning.

e 1,000 examples: We couldn’t perform in-context learning here due to
context window limits.

13

Countdown: Scores by Training Examples

I Direct [CoT | SFT M RFT
0.8

0.6

Num Examples

Example 2: LogiQA

We also tested both methods on LogiQA, a multiple-choice dataset designed to
evaluate deductive reasoning. The performance gap between direct prompting
and chain-of-thought was small (+2% at 0-shot, -2% at 10-shot). When training
datareached 100+ examples, SFT started outperforming RFT—a shift
highlighting how a larger dataset can favor SFT’s ability to generalize widely.

It’s worth noting that reasoning (via chain-of-thought) doesn’t significantly
boost the base model for this task, so even with RFT, the potential gains are
limited. Yet, at lower data levels (10 examples), RFT still exceeds SFT and the
base model, underscoring its robustness in data-scarce situations.

15

LogiQA: Scores by Training Examples

B Direct [l CoT I SFT W RFT

0 10 100

0.6000

0.5500

1000

Practical Implications for RFT

From our experiments, a clear pattern emerges:

e Small Datasets: RFT is a better choice, avoiding overfitting and extracting
more generalizable knowledge.

e Large Datasets: SFT may have the advantage, leveraging extensive labeled
data to develop more comprehensive patterns.

You can also boost low-data performance by creating more detailed reward
functions and increasing the number of model generations per training step.

In the tutorial section of our guidebook, we explore the real-world use case of
training a model to generate GPU code with RFT and the results are
remarkable.

17

Benefits of
RFT

In an erawhere datais
abundant but labeled data is
not, RFT provides a compelling
blueprint for Al development.

18

Scalability: Because RFT relies on
reward feedback rather than dense
labeling, you can scale to new tasks
with minimal overhead.

Faster Iterations: Adjusting reward
functions is often simpler than
acquiring and labeling thousands of
new training samples.

Cost Savings: Human annotation is
expensive. RFT shifts the burden
onto automated reward signals,
significantly cutting costs.

Robustness: Models trained via RFT
tend to be more robust when
encountering domain shifts or noisy
inputs.

Accelerating
Reasoning
Models with
Turbo LoRA

Reasoning models like DeepSeek-R1 are pushing the
boundaries of Al’s ability to handle complex problem-
solving: they can reason through intricate logic, generate
step-by-step mathematical solutions, and provide
explainable outputs.

However, this advanced reasoning comes at a cost: slow
throughput. Reasoning models “think” by generating a lot
of tokens, and generating tokens is inherently slow. Unlike
traditional LLMs that generate responses based purely on
statistical predictions, reasoning models like DeepSeek-R1
decompose problems into structured steps, following a
logical “chain of thought.” This means multiple intermediate
computations are required, further increasing the overall
processing time.

If you plan to put reasoning models into production, then
exploring novel techniques for accelerating throughput and
reducing latency is paramount. Let’s dive in.

20

LoRA: A Quick Refresher

LoRA (Low-Rank Adaptation) is a technique that fine-tunes large language
models by introducing a small set of trainable parameters—usually stored in
low-rank decomposition layers. The main advantage is:

e Youdon't have to retrain the entire model (which could be billions of
parameters), but yield nearly the same results.

e You keep the original weights intact, thereby preserving most of the model’s
pre-trained knowledge.

Weight update in regular finetuning Weight update in LoRA

LoRA matrices A and B
approximate the weight /'
update matrix AW +\

weights ——' — The inner dimension r

is a hyperparameter

Pretrained
weights

Turbo LoRA: 2-4x Faster
Reasoning for Your Models

At Predibase, we developed Turbo LoRA to accelerate inference using an
advanced technique called speculative decoding along with other proprietary
optimizations.

Instead of generating one token at a time, Turbo LoRA predicts multiple tokens
in parallel and then verifies them before finalizing the output. Any “guessed”
tokens inconsistent with the original model are discarded, ensuring zero
difference in the final response. This allows models to maintain high-quality
outputs while generating text significantly faster.

How Turbo LoRA Works (Simplified):

e Asmall, fast “speculator” predicts several tokens in parallel.
e The main model verifies them—if correct, they’re instantly used.

e [fwrong, only the incorrect tokens are recalculated.

Result: Instead of waiting for one token at a time, the model generates multiple
tokens per step—cutting latency dramatically.

22

Applying Turbo to DeepSeek-R1 (or
any reasoning model)

To demonstrate Turbo’s effectiveness, we applied it to DeepSeek-R1-distill-
gwen-32b, a distilled version of DeepSeek-R1 that retains strong reasoning
capabilities while improving efficiency. By adding Turbo LoRA, we saw
significant improvements in throughput, making the model far more practical
for real-world applications.

DeepSeek-Distill-Qwen-32b Performance (GSM8K)

Predibase Turbo 79.8 Tok [sec
Speculator

Without Turbo 41.8 Tok [sec

Throughput (higher is better)

Key Benefits of Turbo for Large
Reasoning Models

Real-Time Al Becomes Feasible Turbo typically drives a 2-3x speedup, making
reasoning models viable for applications like:

e Al-powered customer support (instant responses instead of multi-second
delays).

e Al copilots for developers that generate and debug code in near real-time.

e Healthcare Al assistants that provide fast, detailed diagnostic support.
Lower GPU Costs:

e Faster inference means fewer GPUs are needed to handle the same
workload.

e Cost savings scale with deployment size.

Turbo LoRA is a milestone in making inference of reasoning models feasible for
almost any organization. Coupled with RFT, it becomes a powerful tool for
iterating quickly on specialized tasks without burning through your GPU
budget.

For a detailed tutorial on implementing Turbo LoRA, check out the following
blog: https://pbase.ai/turbodeepseek.

24

https://pbase.ai/turbodeepseek

Using RFT
to Write
CUDA

Kernels

The best way to learn about RFT is to see it in action. Let’s walk through a short
tutorial for a complex use case: teaching an Al model to convert PyTorch code
into efficient Triton kernels. We'll walk through our dataset, the iterative
training loop, the reward functions we designed—and how the model gradually
learned to produce correct and efficient GPU code.

Why GPU Code Generation is Hard

Coding for GPUs involves:

e Parallel Architecture: Harnessing hundreds or thousands of cores
efficiently.

e Memory Hierarchy: Balancing register, shared, and global memory.

e Thread Synchronization: Avoiding race conditions and deadlocks.

Minor errors in a CUDA kernel can degrade performance or crash the GPU.
Teaching an Al these best practices is challenging in a supervised setting due to
the scarcity of comprehensive examples.

26

Why RFT is Well Suited for Code
Generation

This task is particularly well-suited for using reinforcement learning because:

e No Large Labeled Dataset Needed: We started with just a handful of
PyTorch code snippet samples.

e Codeis Verifiable: We can deterministically test whether the generated
Triton kernel code compiles and produces correct outputs.

e Large Search Space: The search space for valid solutions is large and RL
balances exploring new Kernel implementations with exploiting proven
approaches learned during model pretraining.

Setting Up the Task: Minimal
Dataset

We began with a tiny hand-curated dataset of 13 examples, each containing:

e A PyTorch function (e.g., a matrix multiply or simple activation function).

e Aset of test cases to verify correctness.

Because there isn't a widely available dataset mapping PyTorch code to Triton
kernels, we curated these from open-source GitHub projects by finding valid
Triton kernels, writing the equivalent PyTorch code ourselves, and adding our
own test cases to execute against both the PyTorch code and the Triton kernels.

The actual training data only consists of the 13 PyTorch code examples.

28

System & User Messages

We constructed appropriate system and user prompts instructing the model
to:

e Create Triton kernels for the given PyTorch function
e Use specific tags (e.g., ...) so we could extract the kernel cleanly.
e Import the Triton library.

e Maintain a consistent function signature and avoid calling PyTorch
functions that sidestep the need for real GPU code.

System Message
You are an expert in optimizing PyTorch code using Triton. Your task is to convert PyTorch functions into
Triton kernels while ensuring efficiency and correctness.

User Message

Convert the following PyTorch function into an equivalent Python code for a Triton kernel.

PyTorch Code:

{torch_code}

Ensure that the @triton.jit kernel function has the suffix '_kernel' and there is a wrapper function that

calls this kernel with the same name as the original Torch function but with '_triton' appended to it. Your
code should be within “<triton_code>" and "</triton_code>" tags.

Defining our Rewards

Designing a robust reward function is the heart of any RL system. We needed
our model to learn formatting, compilation, correctness, and performance
(eventually). Here's how we approached it:

30

Reward 1: Formatting

Goal: Encourage a consistent code structure that’s easy to parse and run.

Implementation:

String Checks: Did the output include code within tags?
e Triton Imports: Does the generated code import triton and use @triton.jit?

e Partial Credit For Good Triton Semantics: We also assigned fractional
scores for getting certain parts right, such as only using valid triton

language methods, using zeroed out torch output buffers, using masks
during load/stores, etc..

e Sum partial credits from all the criteria to assign a final score between O and

1.
<triton_code> </triton_code> tags present? [0.1] ---------coooo-- Jntrodgce partial credit ins_tead
- - ot _.---7 of binary reward to provide
~ - fine-grained reward signals
Has required imports and uses the grid notation to launeh™"
kernels? [0.2] o= =T
import triton
import triton.language as tl
@triton.jit
S Uses typed constants like tl.constexpr?[0.2] : Total
: - E—— Reward
Completion

Uses only valid methods that exist in the triton.language
(tl) package? [0.2]

Uses masks during load and store operations? [0.1]

Use of negative rewards to

Uses torch.empty in the entrypoint function? [-0.1] -------- discourage undesirable behaviors

Uses torch.zeros in the entrypoint function? [0.1]

Reward 2: Compilation

Goal: Reward the model for generating code that compiles and executes
without throwing exceptions (no syntax errors or invalid calls) even if it gets the
final answer wrong

Implementation: If the code could be executed in a separate Python process
without crashing, the model receives a positive reward of 1

Generated Completion

. . No
Are <triton_code> </triton_code> tags present? —> ReturnO

!

Does the code have a entrypoint function for test cases
and a kernel function that it calls?

l

Yes Load the code, run the test case in a new interpreter via No / Throws Runtime Exception
Return 1 the entrypoint function, and capture the return value. Return 0

No
> ReturnQ

Reward 3: Correctness

Goal: Ensure the kernel’s output matches that of the PyTorch function on

multiple test inputs.

Implementation:

e Multiple Test Cases: We started with two test inputs, then expanded to four
for finer-grained feedback.

e Reward Scaling: Calculate (total number of test cases that passed) / (total
number of test cases), which is a value between O and 1.

e Anti RewardHacking: We monkey-patch the kernel call to detect if the
model just returned a PyTorch operation result (instead of letting the Triton
kernel do the work). If the outputs matched when the kernel was replaced
with a no-op, the reward was set to O.

2. D the code h V" i
1o dre cbrbon_code> </trion_code 2 Entoeilno oty
kernel function that it calls?

tags present?

3. Load the code, run the test case in

ng interpreter via the entrypoint
" r

function, and capture the return value.

Return O

=
L)

No

return value using the monkey-patch
kernel

6. Run the test-case again via the
entrypoint function and capture the

* 5. Monkey Patich

ed

With A No-op Kernel

Ne OR Runtime

Return 0

s

Exception

No -> Kernel is
doing something
menninsgu[to get

Does the output from using the no-
kernel match the output from the
generated kernel?

= the right output

Yes -> Cheatin

Return 0

4

g/Reward Hacking

Generated CUDA Kernel

No OR Runtime Exception

Return O

s

4. Does the output match the
expected result for this test case?

Return O

=
o

"7~ Introduce special guardrail mechanism

to check for reward hacking

Training Loop & Iterations

How GRPO Works

e Generate: For each prompt (PyTorch code snippet), generate N completions
using temperature-based sampling.

e Evaluate: For each generated completion, run our reward checks (format,
compilation, correctness) and assign a reward per reward function.

e Update: Compute advantages (which completions outperformed the
average and which ones did worse than the average) and backpropagate
those signals into the model’s parameters to update them. We use LoRA as
our training method.

e Repeat: Over thousands of steps, the model refines its strategy to maximize
rewards. Typically, this it first learns the format based rewards before
learning how to maximize other rewards.

Latest LoRA
checkpoint

GRPO Trainer

—
—» .. & LoRAX

Frozen Trainable
LLM LoRA

5: L Reward < ! —
v — Server @_

N completions

Online

34

Early Challenges & Refinements

Challenge 1: Reward Hacking: The model initially learned shortcuts, like
returning the result of torch.sum() instead of truly computing a sum via a Triton
kernel. This was a form of clever reward hacking.

e Fix: We penalized completions that succeeded on test cases where the
output from the initial kernel execution matched a second run where we
replaced the generated kernel with a no-op kernel.

(x_ptr + start,
(x, 0)

utput_ptr + tl.

ements
0CK_SIZE =
= lambda META: (tritor

rnel[grid](x,|x.

return| x. (dim=1)

Our model learns to hack our reward function!

Challenge 2: Sparse Rewards: Binary pass/fail gave the model little direction
when it was “almost right.”

e Fix: Introduced partial credit, particularly in the format reward function and
via the introduction of a compilation-based reward, so generating code that
compiles but fails correctness still earns a small reward.

Challenge 3: Limited Test Cases: With only two test cases, the model wasn’t
getting enough signal if it made directional progress toward a correct kernel.

e Fix: We doubled to using four test cases, giving a more nuanced reward
signal if the kernel leads to even getting a subset of these calls correct

36

Results & Discussion

Over roughly 5,000 training steps, our model’s accuracy on held-out examples
climbed to about 53% (meaning 53% of the time, the generated Triton kernel
fully matched the PyTorch outputs on all test cases).

ral/EREAR correctness_reward_func . _ 1. By step 100, the model is almost perfect at meeting
formatting requirements.

2. As the model perfects formatting, correctness
rewards begin to improve steadily.

UL e 3. Correctness rewards take longer to learn than
VAL / formatting rewards, but they're improving faster than
HINERIIE.y aify/global s expected!

Learning curves from initial training run

37

e Faster to Format Compliance: Within ~100-200 steps, the model reliably
produced code that included the correct tags and imports. Within 1000
steps, it learned to get most parts of the formatting reward function
correct.

e Gradual Correctness Gains: True correctness took longer to learn, rising
steadily once the model nailed down syntax and compilation.

e Learned to Avoid Hacking: Through our monkey-patching based detection
algorithm, the model eventually recognized no reward could be gained by
cheating, so it focused on improving its Triton kernel implementation.

train/rewards/format_reward_func VS step) train/rewards/compile_reward_func VS step

1000 2000 3000 400 5000 000 2000 3000 4000 5000

train/rewards/correctness_reward_func VS step

© 1. It takes 10x (1000 steps) longer to learn the formatting function
compared to the initial version since the rules are stricter

___.------- 2. Correctness rewards stay at 0 until compile scores
0.6 reach 0.6+ and format scores hit 0.9+ consistently.

|
M N ™, Pl W
AW AR S 3. Correctness accuracy peaks at 2.5K steps, then levels off as

Ly compile reward increases (until ~4K steps), before rising again
= <l until 5K steps by consistently solving a few test cases correctly.

Learning curves from final training run with partial credit, anti-reward hacking
measures, and compile reward function.

38

Benchmarking on Kernelbench

We assessed our model on the Kernelbench dataset, which presents 250
diverse challenges designed to test code-transpilation skills and output
efficiency. We fine-tuned a relatively compact model (Qwen2.5-Coder-32B-
instruct) that can run on a single GPU and compared it to larger foundation
models like DeepSeek-R1, Claude 3.7 Sonnet, and OpenAl o1.

Despite its smaller size, our model delivered a 3x higher correctness rate than
both OpenAl 01 and DeepSeek-R1, and over 4x the performance of Claude 3.7
Sonnet. Achieving these outcomes on a fraction of the hardware footprint
underscores both the efficiency of our training pipeline and the adaptability of
RFT for specialized coding tasks.

We open-sourced our model (Predibase-T2T-32B-RFT) and made available on
HuggingFace: https:/pbase.ai/t2t.

5 Predibase

PyTorch to Triton Performance (Kernelbench)

Qwen2 5-Coder-32B-Instruct Claude 3.7 Sannet JeepSeck-R Openal ol Predibase

https://pbase.ai/t2t
https://pbase.ai/t2t

Takeaways
and
Getting
Started
with RFT

Reinforcement Fine-tuning stands at the intersection of efficiency,
adaptability, and continual learning. By leveraging RL principles, we can
supercharge pre-trained models to tackle tasks that demand both precision
and resource optimization. Turbo LoRA further democratizes this approach,
accelerating inference for otherwise slow reasoning models.

Key Takeaways:

¢ Self-Improvement is Real: DeepSeek-R1 demonstrated that models can
surpass static models by iterating with well-crafted rewards.

e RFT Shines With Little Data: When labeled data is scarce, RFT outperforms
SFT by treating rewards as the primary learning signal.

e Reasoning Doesn’t Need to be Slow: Turbo LoRA makes serving reasoning
models practical by increasing throughput by 2-4x.

e Real-World Feasibility: From code generation to medical diagnosis, RFT is
not just an academic exercise—it’s rapidly becoming a proven methodology
for next-gen Al applications.

41

Next Steps with RFT

Reinforcement fine-tuning marks a major leap in LLM development by training
models through reward signals rather than relying solely on labeled examples.
Predibase’s end-to-end RFT platform makes this cutting-edge approach
accessible to developers and enterprises, removing the complexities of
infrastructure setup so you can focus on innovation.

e Schedule a Demo: https://pbase.ai/rft
e TryPredibase for Free: https://pbase.ai/getstarted

® Predibase

Data Integrations Reinforcement Fine-tuning Multi-LoRA Serving

."H.H"\.
. B
.'\-\r'

Base Trainable
Model LoRA

——, e~ ———
(Datasets) (GRPOTrainer) o A& (LoRAXServer)
2 55, Sesiasickl i

Fully Managed Infrastructure

Why RFT on Predibase?

Build high performance production Al without labeled data on the fastest infra
— all in your cloud.

e Fully Managed in Your Cloud or Ours: No need to worry about spinning up
or maintaining infra. Predibase provides serverless infra for reinforcement
fine-tuning and model serving with flexibility to deployment in your cloud or
ours.

¢ Integrated Workflow for Production Al: From data prep to model
deployment, everything is streamlined in a single unified platform with a

robust SDK and user-friendly Ul, complete with dashboards for tracking
models and performance.

e Blazing Fast and Efficient Serving: At the heart of our stack is LoORAX, an

"By fine-tuning and serving Llama-3-8b on Predibase, we've improve accuracy,
achieved lightning-fast inference and reduced costs by 5x compared to GPT-4.
But most importantly, we've been able to build a better product for our
customers, leading to more transparent and efficient hiring practices."

Vlad Bukhin, Staff ML Engineer, Checkr

€5 Predibase

Supercharge Your Al with the Best Models on the Fastest Infra

Predibase is the fastest, most efficient way to customize and serve
open-source models that outperform GPT-4—right in your own
cloud. With no labeled data required, you can rapidly tailor any

model to your use case and deploy on blazing-fast serverless
infrastructure. Leading companies like Checkr, Nubank, Marsh
McLennan, and Qualcomm have achieved 20% higher accuracy
and 5-10x faster inference at a fraction of the cost compared to
the best frontier models.

www.predibase.com/demo

