


1.

2.

3.

4.

5.

Reinventing AI with DeepSeek-R1
and Reinforcement Learning

Why Reinforcement Fine-Tuning
Outperforms Supervised Fine-
Tuning

Accelerating Reasoning Models
with Turbo LoRA

Tutorial: Using RFT to Write CUDA
Kernels

What’s Next: Key Takeaways and
Getting Started with RFT

Table of
Contents

1



•

•

•

•

How DeepSeek-R1 challenged conventional AI wisdom by self-improving
and surpassing established models.

Why RFT often outperforms supervised fine-tuning, especially when data is
scarce.

How Turbo LoRA accelerates reasoning models to make production serving
in production more practical.

A hands-on tutorial showing how to apply RFT to generate CUDA kernels—
one of the most technical and challenging coding tasks.

AI is no longer a static endeavor—models can evolve and adapt even after
deployment. A prominent driving force behind this shift is reinforcement
learning (RL). Traditional machine learning approaches are more static, relying
heavily on supervised learning that demands enormous amounts of labeled
datasets. These large labeled datasets are used to train models to memorize
specific facts and patterns, but what happens when data is thin? Enter
Reinforcement Fine-Tuning (RFT), a new technique that harnesses the power of
RL to fine-tune pre-trained language models to think for themselves.

In this guidebook, you'll learn:

Combining real-world insights with hands-on tutorials, we’ll show you how to
build AI systems that don’t just learn—they continually learn in an iterative,
reward-driven manner. Prepare to explore how RFT is unlocking new frontiers
in LLMs and beyond.

2



Reinventing AI
with DeepSeek
and
Reinforcement
Learning

3



The Self-Improvement Paradigm

•

•

Exploration: The model attempts multiple strategies or actions to solve a
task.

Reward: Each action yields some reward signal (positive or negative), which
guides the model’s future choices.

Reinforcement learning introduced a feedback-driven mechanism for training
AI. Rather than relying on a massive set of labeled examples, RL agents learn by
exploration and reward:

This approach is transformative because it aligns more closely with how
humans naturally learn—through trial, error, and continuous feedback—and
opens the door to continual learning and deeper reasoning capabilities. In RL,
the “environment” can be a game, simulation, logic problem or even a text-
based generation task—any context where feedback signals can guide the
model to a correct response.

4



The Significance of DeepSeek-R1
in Modern AI

•

•

•

Adaptive Reward Structures: The team behind DeepSeek-R1 designed
multiple reward functions—some focused on accuracy, others on efficiency
or creativity. The model then learned to balance these objectives and learn
different strategies for solving complex problems.

Iterative Refinement: Each iteration of training involved not just
backpropagation of errors but a reward-based feedback loop that
emphasized what worked best in practice.

Breaking Performance Barriers: By continuously learning from outcomes,
DeepSeek-R1 was able to outperform traditional LLMs.

DeepSeek-R1 exemplifies how a model can be designed to reason. Instead of
passively ingesting training data, DeepSeek-R1 performs active exploration:

Perhaps the biggest contribution of DeepSeek-R1 is the fact that it’s open-
sourced. By sharing its weights and training approach, the team behind
DeepSeek made it possible for engineering teams to train and customize their
own reasoning models. Prior to the release of DeepSeek-R1, OpenAI’s closed-
source O1 model was pretty much the only reasoning model engineers could
get their hands on and the weights were certainly not available for deeper
inspection.

5



Comparing DeepSeek-R1 to
Traditional Models

•

•

•

Learns dynamically, responding to changes in task requirements or data
distributions.

Requires far fewer explicitly labeled data points because it learns from
rewards. A reasoning model can be fine-tuned with as little as 10 rows of
example data and provide incredible results—more on that later.

Minimizes the risk of stagnation—a phenomenon where models plateau due
to lack of new, high-quality labeled data.

Typically, traditional models train once on a static dataset and then freeze their
parameters upon deployment. In contrast, DeepSeek-R1:

The key takeaway: Deepseek-R1’s success hints at a future where “one-and-
done” training is a relic of the past. Continuous learning is quickly becoming the
de facto standard for high-stakes AI applications.

6



The Future of AI
Customization:
Reinforcement
Fine-Tuning vs.
Supervised Fine-
Tuning

7



What is Reinforcement Fine-
Tuning (RFT)?

1.

2.

3.

Start with a pre-trained model that already has a solid grasp of general
knowledge.

Define a reward function encapsulating your target metrics (e.g.,
correctness, user satisfaction, computational efficiency).

Iteratively fine-tune this model using RL techniques such as policy
gradients, Q-learning, or other advanced algorithms.

For years, Reinforcement Learning (RL) and fine-tuning belonged to completely
different worlds. On one hand, fine-tuning is all about supervised learning: you
train a model on labeled data, and it learns to predict the correct outputs for
given inputs. On the other hand, RL focuses on decision-making in dynamic
environments: an agent interacts with its surroundings, gets feedback
(rewards), and adapts based on trial and error. Enter Reinforcement Fine-
Tuning (RFT), a new twist on applying RL principles to fine-tuning tasks.

Reinforcement Fine-Tuning (RFT) combines the strengths of fine-tuning a pre-
trained LLM—like the open-source Llama series from Meta—with the iterative,
feedback-driven nature of RL. The core idea is to:

This approach enables you to customize open-source LLMs with little-to-no
data and turn them into powerful reasoning models for your specific task—like
building an AI copilot for an internal codebase.

8



Comparing RFT vs. SFT

Factor 
Reinforcement Fine-
tuning 

Supervised Fine-Tuning 

Data
Requirements 

Learns from a reward
signal; minimal labeled
data needed 

Needs large labeled
datasets for best results -
typically 1,000+ rows 

Adaptability  Improves continuously
as new data or scenarios
appear 

Improvement is mostly
limited to the scope of the
labeled data 

Exploration  Actively tries new
strategies, guided by
rewards 

Relies on fixed examples,
no inherent exploration
mechanism 

Performance
Progress 

Can keep improving as
reward mechanism
evolves 

Typically reaches a plateau
once labeled data has been
maximally leveraged 

Reinforcement fine-tuning sounds like a game-changer, but how does it differ
from Supervised Fine-tuning? Let’s take a look:

9



RFT Wins When Data is Scarce

•

•

•

Code Transpilation: Oftentimes, code conversion tasks (e.g., Java to Python)
lack abundant mapping data. RFT is well-suited to these scenarios because
you can evaluate the correctness of the generated code. For instance, in
Java-to-Python conversion, you can run the generated Python code on test
cases and verify that its outputs match those of the original Java program.

Game Strategy: Games like Chess and Wordle are straightforward when it
comes to verifying outcomes (win/loss), but hard to label every move as
correct or incorrect. RFT can learn effective strategies using only the
win/loss signal.

Medical Diagnosis: RFT is a good fit because it learns from feedback at each
decision point, much like a doctor refining their intuition. It explores various
diagnostic actions (such as ordering tests), and adapts based on outcomes
or new information, steadily improving its accuracy over time.

Reinforcement Fine-Tuning (RFT) goes beyond Supervised Fine-Tuning (SFT) by
removing the need for labeled data, relying instead on an objective measure of
correctness. With only a few dozen examples, SFT often overfits (memorizing
data rather than learning general patterns), while RFT can learn robust
strategies and resists overfitting. However, once dataset sizes reach 100k+
examples, RFT slows down, and SFT generalizes better.

Example use cases where RFT shines:

10



When to Use Reinforcement Fine-
Tuning vs. Supervised Fine-Tuning
Deciding whether to use RFT or SFT depends on your data availability, task
complexity, and performance goals. Below is a decision flowchart to help teams
determine the right approach:

11



Performance
Benchmarks:
RFT vs. SFT

12



Example 1: The Countdown Game

•

•

•

With just 10 examples, RFT improved the base model’s chain-of-thought
performance by 18%.

With 100 examples, that improvement jumped to 60%.

SFT, on the other hand, performed poorly across all dataset sizes—likely due
to memorizing specifics rather than building robust patterns.

•

•

•

0 examples: 0-shot prompting, with no demonstrations provided.

10 & 100 examples: These same examples were also used for in-context
learning.

1,000 examples: We couldn’t perform in-context learning here due to
context window limits.

To explore how RFT and SFT compare at different scales, we ran experiments
on the Countdown game with dataset sizes of 10, 100, and 1,000 examples.

Key Findings

The chart on the following page shows our results. Here is additional context
for ourvarious experiments as represented on the X-axis.

13



14



Example 2: LogiQA
We also tested both methods on LogiQA, a multiple-choice dataset designed to
evaluate deductive reasoning. The performance gap between direct prompting
and chain-of-thought was small (+2% at 0-shot, -2% at 10-shot). When training
data reached 100+ examples, SFT started outperforming RFT—a shift
highlighting how a larger dataset can favor SFT’s ability to generalize widely.

It’s worth noting that reasoning (via chain-of-thought) doesn’t significantly
boost the base model for this task, so even with RFT, the potential gains are
limited. Yet, at lower data levels (10 examples), RFT still exceeds SFT and the
base model, underscoring its robustness in data-scarce situations.

15



16



Practical Implications for RFT

•

•

Small Datasets: RFT is a better choice, avoiding overfitting and extracting
more generalizable knowledge.

Large Datasets: SFT may have the advantage, leveraging extensive labeled
data to develop more comprehensive patterns.

From our experiments, a clear pattern emerges:

You can also boost low-data performance by creating more detailed reward
functions and increasing the number of model generations per training step.

In the tutorial section of our guidebook, we explore the real-world use case of
training a model to generate GPU code with RFT and the results are
remarkable.

17



1.

2.

3.

4.

Scalability: Because RFT relies on
reward feedback rather than dense
labeling, you can scale to new tasks
with minimal overhead.

Faster Iterations: Adjusting reward
functions is often simpler than
acquiring and labeling thousands of
new training samples.

Cost Savings: Human annotation is
expensive. RFT shifts the burden
onto automated reward signals,
significantly cutting costs.

Robustness: Models trained via RFT
tend to be more robust when
encountering domain shifts or noisy
inputs.

Benefits of
RFT

In an era where data is
abundant but labeled data is

not, RFT provides a compelling
blueprint for AI development.

18



Accelerating
Reasoning
Models with
Turbo LoRA

19



Reasoning models like DeepSeek-R1 are pushing the
boundaries of AI’s ability to handle complex problem-
solving: they can reason through intricate logic, generate
step-by-step mathematical solutions, and provide
explainable outputs.

However, this advanced reasoning comes at a cost: slow
throughput. Reasoning models “think” by generating a lot
of tokens, and generating tokens is inherently slow. Unlike
traditional LLMs that generate responses based purely on
statistical predictions, reasoning models like DeepSeek-R1
decompose problems into structured steps, following a
logical “chain of thought.” This means multiple intermediate
computations are required, further increasing the overall
processing time.

If you plan to put reasoning models into production, then
exploring novel techniques for accelerating throughput and
reducing latency is paramount. Let’s dive in.

20



LoRA: A Quick Refresher

•

•

You don’t have to retrain the entire model (which could be billions of
parameters), but yield nearly the same results.

You keep the original weights intact, thereby preserving most of the model’s
pre-trained knowledge.

LoRA (Low-Rank Adaptation) is a technique that fine-tunes large language
models by introducing a small set of trainable parameters—usually stored in
low-rank decomposition layers. The main advantage is:

21



Turbo LoRA: 2-4x Faster
Reasoning for Your Models

•

•

•

A small, fast “speculator” predicts several tokens in parallel.

The main model verifies them—if correct, they’re instantly used.

If wrong, only the incorrect tokens are recalculated.

At Predibase, we developed Turbo LoRA to accelerate inference using an
advanced technique called speculative decoding along with other proprietary
optimizations. 

Instead of generating one token at a time, Turbo LoRA predicts multiple tokens
in parallel and then verifies them before finalizing the output. Any “guessed”
tokens inconsistent with the original model are discarded, ensuring zero
difference in the final response. This allows models to maintain high-quality
outputs while generating text significantly faster.

How Turbo LoRA Works (Simplified):

Result: Instead of waiting for one token at a time, the model generates multiple
tokens per step—cutting latency dramatically.

22



Applying Turbo to DeepSeek-R1 (or
any reasoning model)
To demonstrate Turbo’s effectiveness, we applied it to DeepSeek-R1-distill-
qwen-32b, a distilled version of DeepSeek-R1 that retains strong reasoning
capabilities while improving efficiency. By adding Turbo LoRA, we saw
significant improvements in throughput, making the model far more practical
for real-world applications.

23



Key Benefits of Turbo for Large
Reasoning Models

•

•

•

AI-powered customer support (instant responses instead of multi-second
delays).

AI copilots for developers that generate and debug code in near real-time.

Healthcare AI assistants that provide fast, detailed diagnostic support.

•

•

Faster inference means fewer GPUs are needed to handle the same
workload.

Cost savings scale with deployment size.

Real-Time AI Becomes Feasible Turbo typically drives a 2-3x speedup, making
reasoning models viable for applications like:

 Lower GPU Costs:

Turbo LoRA is a milestone in making inference of reasoning models feasible for
almost any organization. Coupled with RFT, it becomes a powerful tool for
iterating quickly on specialized tasks without burning through your GPU
budget.

For a detailed tutorial on implementing Turbo LoRA, check out the following
blog: https://pbase.ai/turbodeepseek.

24

https://pbase.ai/turbodeepseek


Tutorial:
Using RFT
to Write
CUDA
Kernels

25



Why GPU Code Generation is Hard

•

•

•

Parallel Architecture: Harnessing hundreds or thousands of cores
efficiently.

Memory Hierarchy: Balancing register, shared, and global memory.

Thread Synchronization: Avoiding race conditions and deadlocks.

The best way to learn about RFT is to see it in action. Let’s walk through a short
tutorial for a complex use case: teaching an AI model to convert PyTorch code
into efficient Triton kernels. We’ll walk through our dataset, the iterative
training loop, the reward functions we designed—and how the model gradually
learned to produce correct and efficient GPU code.

Coding for GPUs involves:

Minor errors in a CUDA kernel can degrade performance or crash the GPU.
Teaching an AI these best practices is challenging in a supervised setting due to
the scarcity of comprehensive examples.

26



Why RFT is Well Suited for Code
Generation

•

•

•

No Large Labeled Dataset Needed: We started with just a handful of
PyTorch code snippet samples.

Code is Verifiable: We can deterministically test whether the generated
Triton kernel code compiles and produces correct outputs.

Large Search Space: The search space for valid solutions is large and RL
balances exploring new Kernel implementations with exploiting proven
approaches learned during model pretraining.

This task is particularly well-suited for using reinforcement learning because:

27



Setting Up the Task: Minimal
Dataset

•

•

A PyTorch function (e.g., a matrix multiply or simple activation function).

A set of test cases to verify correctness.

We began with a tiny hand-curated dataset of 13 examples, each containing:

Because there isn’t a widely available dataset mapping PyTorch code to Triton
kernels, we curated these from open-source GitHub projects by finding valid
Triton kernels, writing the equivalent PyTorch code ourselves, and adding our
own test cases to execute against both the PyTorch code and the Triton kernels.

The actual training data only consists of the 13 PyTorch code examples.

28



System & User Messages

•

•

•

•

Create Triton kernels for the given PyTorch function

Use specific tags (e.g., ... ) so we could extract the kernel cleanly.

Import the Triton library.

Maintain a consistent function signature and avoid calling PyTorch
functions that sidestep the need for real GPU code.

We constructed appropriate system and user prompts instructing the model
to:

29



Defining our Rewards
Designing a robust reward function is the heart of any RL system. We needed
our model to learn formatting, compilation, correctness, and performance
(eventually). Here’s how we approached it:

30



Reward 1: Formatting

•

•

•

•

String Checks: Did the output include code within tags?

Triton Imports: Does the generated code import triton and use @triton.jit?

Partial Credit For Good Triton Semantics: We also assigned fractional
scores for getting certain parts right, such as only using valid triton
language methods, using zeroed out torch output buffers, using masks
during load/stores, etc. .

Sum partial credits from all the criteria to assign a final score between 0 and
1.

Goal: Encourage a consistent code structure that’s easy to parse and run.

Implementation:

31



Reward 2: Compilation
Goal: Reward the model for generating code that compiles and executes
without throwing exceptions (no syntax errors or invalid calls) even if it gets the
final answer wrong

Implementation: If the code could be executed in a separate Python process
without crashing, the model receives a positive reward of 1

32



Reward 3: Correctness

•

•

•

Multiple Test Cases: We started with two test inputs, then expanded to four
for finer-grained feedback.

Reward Scaling: Calculate (total number of test cases that passed ) / (total
number of test cases), which is a value between 0 and 1. 

Anti RewardHacking: We monkey-patch the kernel call to detect if the
model just returned a PyTorch operation result (instead of letting the Triton
kernel do the work). If the outputs matched when the kernel was replaced
with a no-op, the reward was set to 0.

Goal: Ensure the kernel’s output matches that of the PyTorch function on
multiple test inputs.

Implementation:

33



Training Loop & Iterations

•

•

•

•

Generate: For each prompt (PyTorch code snippet), generate N completions
using temperature-based sampling.

Evaluate: For each generated completion, run our reward checks (format,
compilation, correctness) and assign a reward per reward function.

Update: Compute advantages (which completions outperformed the
average and which ones did worse than the average) and backpropagate
those signals into the model’s parameters to update them. We use LoRA as
our training method.

Repeat: Over thousands of steps, the model refines its strategy to maximize
rewards. Typically, this it first learns the format based rewards before
learning how to maximize other rewards.

How GRPO Works

34



Early Challenges & Refinements

• Fix: We penalized completions that succeeded on test cases where the
output from the initial kernel execution matched a second run where we
replaced the generated kernel with a no-op kernel.

Challenge 1: Reward Hacking: The model initially learned shortcuts, like
returning the result of torch.sum() instead of truly computing a sum via a Triton
kernel. This was a form of clever reward hacking.

35



• Fix: Introduced partial credit, particularly in the format reward function and
via the introduction of a compilation-based reward, so generating code that
compiles but fails correctness still earns a small reward.

• Fix: We doubled to using four test cases, giving a more nuanced reward
signal if the kernel leads to even getting a subset of these calls correct

Challenge 2: Sparse Rewards: Binary pass/fail gave the model little direction
when it was “almost right.”

Challenge 3: Limited Test Cases: With only two test cases, the model wasn’t
getting enough signal if it made directional progress toward a correct kernel.

36



Results & Discussion

Over roughly 5,000 training steps, our model’s accuracy on held-out examples
climbed to about 53% (meaning 53% of the time, the generated Triton kernel
fully matched the PyTorch outputs on all test cases).

Learning curves from initial training run

37



•

•

•

Faster to Format Compliance: Within ~100–200 steps, the model reliably
produced code that included the correct tags and imports. Within 1000
steps, it learned to get most parts of the formatting reward function
correct.

Gradual Correctness Gains: True correctness took longer to learn, rising
steadily once the model nailed down syntax and compilation.

Learned to Avoid Hacking: Through our monkey-patching based detection
algorithm, the model eventually recognized no reward could be gained by
cheating, so it focused on improving its Triton kernel implementation.

Learning curves from final training run with partial credit, anti-reward hacking
measures, and compile reward function.

38



Benchmarking on Kernelbench

We assessed our model on the Kernelbench dataset, which presents 250
diverse challenges designed to test code-transpilation skills and output
efficiency. We fine-tuned a relatively compact model (Qwen2.5-Coder-32B-
instruct) that can run on a single GPU and compared it to larger foundation
models like DeepSeek-R1, Claude 3.7 Sonnet, and OpenAI o1.

Despite its smaller size, our model delivered a 3x higher correctness rate than
both OpenAI o1 and DeepSeek-R1, and over 4x the performance of Claude 3.7
Sonnet. Achieving these outcomes on a fraction of the hardware footprint
underscores both the efficiency of our training pipeline and the adaptability of
RFT for specialized coding tasks.

We open-sourced our model (Predibase-T2T-32B-RFT) and made available on
HuggingFace: https://pbase.ai/t2t.

39

https://pbase.ai/t2t
https://pbase.ai/t2t


Takeaways
and
Getting
Started
with RFT

40



•

•

•

•

Self-Improvement is Real: DeepSeek-R1 demonstrated that models can
surpass static models by iterating with well-crafted rewards.

RFT Shines With Little Data: When labeled data is scarce, RFT outperforms
SFT by treating rewards as the primary learning signal.

Reasoning Doesn’t Need to be Slow: Turbo LoRA makes serving reasoning
models practical by increasing throughput by 2-4x.

Real-World Feasibility: From code generation to medical diagnosis, RFT is
not just an academic exercise—it’s rapidly becoming a proven methodology
for next-gen AI applications.

Reinforcement Fine-tuning stands at the intersection of efficiency,
adaptability, and continual learning. By leveraging RL principles, we can
supercharge pre-trained models to tackle tasks that demand both precision
and resource optimization. Turbo LoRA further democratizes this approach,
accelerating inference for otherwise slow reasoning models.

Key Takeaways:

41



Next Steps with RFT

•

•

Schedule a Demo: https://pbase.ai/rft

Try Predibase for Free: https://pbase.ai/getstarted

Reinforcement fine-tuning marks a major leap in LLM development by training
models through reward signals rather than relying solely on labeled examples.
Predibase’s end-to-end RFT platform makes this cutting-edge approach
accessible to developers and enterprises, removing the complexities of
infrastructure setup so you can focus on innovation.

42



Why RFT on Predibase?

•

•

•

Fully Managed in Your Cloud or Ours: No need to worry about spinning up
or maintaining infra. Predibase provides serverless infra for reinforcement
fine-tuning and model serving with flexibility to deployment in your cloud or
ours.

Integrated Workflow for Production AI: From data prep to model
deployment, everything is streamlined in a single unified platform with a
robust SDK and user-friendly UI, complete with dashboards for tracking
models and performance.

Blazing Fast and Efficient Serving: At the heart of our stack is LoRAX, an

Build high performance production AI without labeled data on the fastest infra
— all in your cloud.

43




