
The Beginner’s
Guide to Building
Secure Software

Part 1: The Importance of Secure Software

Part 2: Application Security Team Roles
and Responsibilities

Part 3: Implementing Security within
the Complete SDLC
Implementing Security Scanners
Adding Security Controls

Part 4: Adhering to Compliance
Vulnerability Reporting
Security and Compliance Dashboards
Auditing

Part 5: Conclusion

/03/

/04/

/05/

/09/

/11/

Table of Contents

2

Try GitLab free for 30 days Follow us:

https://www.linkedin.com/company/gitlab-com/?utm_campaign=autosd&utm_content=buildsecuresoftware&utm_asset_type=ebook&utm_budget=cmp
https://www.facebook.com/gitlab/?utm_campaign=autosd&utm_content=buildsecuresoftware&utm_asset_type=ebook&utm_budget=cmp
https://twitter.com/gitlab?utm_campaign=autosd&utm_content=buildsecuresoftware&utm_asset_type=ebook&utm_budget=cmp
https://www.youtube.com/channel/UCnMGQ8QHMAnVIsI3xJrihhg?utm_campaign=autosd&utm_content=buildsecuresoftware&utm_asset_type=ebook&utm_budget=cmp
https://about.gitlab.com/free-trial/?utm_campaign=autosd&utm_content=buildsecuresoftware&utm_asset_type=ebook&utm_budget=cmp

Part 1: The Importance of Secure Software
Software can be vulnerable to attacks that can steal private customer data, damage infrastructure,
or even take services down completely. Cyberattacks and breaches are occurring more
frequently than ever before, leaking vast amounts of private data. These breaches can have great
repercussions for an organization, such as regulatory fines, service downtown, resulting in a loss of
reputation, trust, and ultimately customers. The Open Web Application Security Project (OWASP)
has identified the following as some of the main causes of software breaches:

• �Injection flaws: These are flaws in the way that software handles user input,
which can allow attackers to inject malicious code into the system.

• �Broken authentication and session management: These are flaws in the way that
software manages user authentication and sessions, which can allow attackers to
steal user credentials or take over user accounts.

• �Cross-site scripting (XSS): This is a type of attack that allows attackers to inject
malicious code into websites, which can then be executed in the victim’s browser.

• �Security misconfiguration: This is a general term for flaws in the way that software
is configured, which can leave it vulnerable to attack.

• �Insecure design: This is a general term for flaws in the way that software is designed,
which can leave it vulnerable to attack.

All these risks can be mitigated by implementing security best practices for the complete software
development lifecycle (SDLC) and by following suitable security processes to ensure that an
application is secure. This process involves building a security team, setting up security controls,
enabling collaboration, and continuously adhering to compliance.

3

Try GitLab free for 30 days Follow us:

https://www.linkedin.com/company/gitlab-com/?utm_campaign=autosd&utm_content=buildsecuresoftware&utm_asset_type=ebook&utm_budget=cmp
https://www.facebook.com/gitlab/?utm_campaign=autosd&utm_content=buildsecuresoftware&utm_asset_type=ebook&utm_budget=cmp
https://twitter.com/gitlab?utm_campaign=autosd&utm_content=buildsecuresoftware&utm_asset_type=ebook&utm_budget=cmp
https://www.youtube.com/channel/UCnMGQ8QHMAnVIsI3xJrihhg?utm_campaign=autosd&utm_content=buildsecuresoftware&utm_asset_type=ebook&utm_budget=cmp
https://about.gitlab.com/free-trial/?utm_campaign=autosd&utm_content=buildsecuresoftware&utm_asset_type=ebook&utm_budget=cmp

• �Security architect: Designs and implements the
organization’s security architecture, which includes
security policies, procedures, and controls.

• �Security engineer: Implements and maintains the
organization’s security controls, such as vulnerability
scanning, penetration testing, and security incident
response.

• �Security analyst: Monitors the organization’s security
posture by analyzing system logs and network traffic.

• �Security researcher: Researches and develops new
security solutions which include vulnerability discovery,
exploit development, and security testing.

• �Security trainer: Develops security awareness training
programs, conducts security training sessions, and
provides security consulting services.

• �Compliance officer: Ensures that an organization is
compliant with internal and external regulations.

• �CISO (Chief Information Security Officer): The CISO is
responsible for the overall security of the organization,
which includes developing and implementing security
policies and procedures, and managing the security team.

These are some of the common roles you may need for your
security team, but note that every team is built differently.
These individuals must collaborate with developers to
create and maintain a strong security posture that can
help to protect the organization from a variety of different
security risks.

Security teams typically have far fewer members than
development teams, making collaboration a challenge. The
path to nurturing a strong partnership between security and
development teams is through the tools they use. For strong
collaboration, these tools must be easy to use, reduce
context switching, and provide a single-source-of-truth for
both developers and the security team.

Part 2: Application Security Team Roles and Responsibilities
While security is everyone’s responsibility, your organization’s security team plays a crucial part in protecting the
organization from security threats. Here are some of the personas you may find in your organization’s security team:

4

Try GitLab free for 30 days Follow us:

https://www.linkedin.com/company/gitlab-com/?utm_campaign=autosd&utm_content=buildsecuresoftware&utm_asset_type=ebook&utm_budget=cmp
https://www.facebook.com/gitlab/?utm_campaign=autosd&utm_content=buildsecuresoftware&utm_asset_type=ebook&utm_budget=cmp
https://twitter.com/gitlab?utm_campaign=autosd&utm_content=buildsecuresoftware&utm_asset_type=ebook&utm_budget=cmp
https://www.youtube.com/channel/UCnMGQ8QHMAnVIsI3xJrihhg?utm_campaign=autosd&utm_content=buildsecuresoftware&utm_asset_type=ebook&utm_budget=cmp
https://about.gitlab.com/free-trial/?utm_campaign=autosd&utm_content=buildsecuresoftware&utm_asset_type=ebook&utm_budget=cmp

Part 3: Implementing Security
within the Complete SDLC

When people think of security, they usually think of
implementing controls at the application level to prevent a
breach, such as a firewall. However, security involves more than
just the application - it involves securing the complete SDLC.

The SDLC is a process which organizations use to develop high-
quality and efficient software. It includes the following stages:

Planning: Create a plan for developing the software, which
includes developing timeline, cost-analysis, and resource
allocation.

Designing: Determine the best solutions for developing the
application.

Implementing: Begin writing the software according to the
design specifications.

Testing/Securing: Examine code for bugs and security issues.

Deploying: Make the software accessible to others.

These stages should be automated as much as possible, and
performed continuously as needs may change.

SDLC in a nutshell

Default

Feature
Create a

merge request

Commit your
changes

CI pipeline runs &
Security Scans Review

app

Discussion, Code
& Security Reviews

Approve
changes

Merge,
issue closed

CD pipeline
runs

Security
Scans

Security
Dashboards

Create
an issue

5

Try GitLab free for 30 days Follow us:

https://www.linkedin.com/company/gitlab-com/?utm_campaign=autosd&utm_content=buildsecuresoftware&utm_asset_type=ebook&utm_budget=cmp
https://www.facebook.com/gitlab/?utm_campaign=autosd&utm_content=buildsecuresoftware&utm_asset_type=ebook&utm_budget=cmp
https://twitter.com/gitlab?utm_campaign=autosd&utm_content=buildsecuresoftware&utm_asset_type=ebook&utm_budget=cmp
https://www.youtube.com/channel/UCnMGQ8QHMAnVIsI3xJrihhg?utm_campaign=autosd&utm_content=buildsecuresoftware&utm_asset_type=ebook&utm_budget=cmp
https://about.gitlab.com/free-trial/?utm_campaign=autosd&utm_content=buildsecuresoftware&utm_asset_type=ebook&utm_budget=cmp

Rather than just scanning for security flaws after deploying,
security should be shifted-left, meaning it should be
considered in earlier phases of the SDLC. Relating to
shifting-left, the diagram above, shows the following:

• �Security scans are run along with the CI pipeline which
should include unit-tests.

• �Production deployments are blocked until a code/security
review is performed and changes are approved.

• �Upon approval, deployment is automatically performed.

• �Security dashboards are populated for security posture
oversight and monitoring.

This process prevents insecure code from being deployed
into production. In order to begin implementing security
best practices to your organization’s SDLC, you can start
by implementing security scanners and adding security
controls throughout your project.

Implementing Security Scanners
One of the first steps in Application Security is to regularly
scan your application for vulnerabilities. Security scanners
can help identify vulnerabilities before they are deployed
to a production environment, allowing you to proactively
address the risk of your application. Scanners can either
scan static files or the deployed application itself for
vulnerabilities.

Static security scanners search your source code in the
Git repository for vulnerabilities. The recommended static
scanners are as follows:

•	 �Static Application Security Scanning (SAST): Checks
your application source code for known weaknesses.

•	� �Secret Detection: Scans all text files, regardless of the
language or framework used to help prevent your secrets
from being exposed.

•	 �Container Scanning: Scans your application’s container
images for known vulnerabilities.

6

Try GitLab free for 30 days Follow us:

https://www.linkedin.com/company/gitlab-com/?utm_campaign=autosd&utm_content=buildsecuresoftware&utm_asset_type=ebook&utm_budget=cmp
https://www.facebook.com/gitlab/?utm_campaign=autosd&utm_content=buildsecuresoftware&utm_asset_type=ebook&utm_budget=cmp
https://twitter.com/gitlab?utm_campaign=autosd&utm_content=buildsecuresoftware&utm_asset_type=ebook&utm_budget=cmp
https://www.youtube.com/channel/UCnMGQ8QHMAnVIsI3xJrihhg?utm_campaign=autosd&utm_content=buildsecuresoftware&utm_asset_type=ebook&utm_budget=cmp
https://about.gitlab.com/free-trial/?utm_campaign=autosd&utm_content=buildsecuresoftware&utm_asset_type=ebook&utm_budget=cmp

• �Dependency Scanning: Analyzes your application’s
dependencies for known vulnerabilities, including
transitive dependencies, also known as nested
dependencies.

• �Infrastructure as Code (IaC) Scanning: Scans your
infrastructure definition files for known vulnerabilities.

• �Coverage-guided Fuzz-testing: Sends random inputs to
an instrumented version of your application in an effort
to cause unexpected behavior. Such behavior indicates a
bug or security risk that you should address.

• �License Scanning: Scans licenses found in application
dependencies. Some licenses may be restrictive and can
have legal implications.

• �Code Quality Scanning: Analyzes your source code’s
quality and complexity. This helps keep your project’s
code simple, readable, and easier to maintain further
contributing to making it easy to maintain application
security.

There are also dynamic security scanners that search
for vulnerabilities in an application that has already been
deployed and is running. Dynamic scanners should run in a
pre-production environment to ensure that security issues
are resolved before the code is pushed to production.

• �Dynamic Application Security Scanning (DAST):
Examines your running application in a deployed
environment for vulnerabilities.

• �Web API Fuzz-testing: Sets operation parameters to
unexpected values in an effort to cause unexpected
behavior and errors in the API backend. This helps you
discover bugs and potential security issues that other QA
processes may miss.

While the best approach is to run scanners within a pipeline
for every code change, you can also schedule scanners to
run as needed. These scanners should also be integrated
into your code review system, allowing both developers and
security team members to communicate and assess risk.

7

Try GitLab free for 30 days Follow us:

https://www.linkedin.com/company/gitlab-com/?utm_campaign=autosd&utm_content=buildsecuresoftware&utm_asset_type=ebook&utm_budget=cmp
https://www.facebook.com/gitlab/?utm_campaign=autosd&utm_content=buildsecuresoftware&utm_asset_type=ebook&utm_budget=cmp
https://twitter.com/gitlab?utm_campaign=autosd&utm_content=buildsecuresoftware&utm_asset_type=ebook&utm_budget=cmp
https://www.youtube.com/channel/UCnMGQ8QHMAnVIsI3xJrihhg?utm_campaign=autosd&utm_content=buildsecuresoftware&utm_asset_type=ebook&utm_budget=cmp
https://about.gitlab.com/free-trial/?utm_campaign=autosd&utm_content=buildsecuresoftware&utm_asset_type=ebook&utm_budget=cmp

Try GitLab free for 30 days

Adding Security Controls

A crucial control to safeguard your application is to
implement separation of duties. Separation of duties means
that more than one person should be required to complete a
task. Some examples of separation of duties include:

• �The same developer who added a new commit should
not be allowed to merge it into a production-level
branch without approval. Approval should be performed
by another team member who has reviewed the code
change.

• �If a vulnerability is detected in a new commit, only a
member of the security team should be able to approve
the code change to production once they have validated
that the vulnerability will not impact the production
environment.

Separation of duties can be achieved by implementing the
following types of controls:

• �Security Scanner Policy: Allows approval to be required
based on the vulnerability findings of one or more security
scan jobs.

• �License Policy: Allows approval to be required based on
the licenses detected and the policy set for acceptable
licenses.

• �Merge Request Approval Policy: Allows a minimum
baseline of approvals to be required either for all merge
requests or for merge requests containing unsigned
commits.

• �Scan Execution Policies: Used to require that security
scans run on a specified schedule or with the project
pipeline on each Git push or Merge Request update.

• �Compliance Frameworks: A label which identifies that
your project has certain compliance requirements or needs
additional oversight. The label can optionally enforce
different compliance requirements for the projects on
which it is applied.

• �Branch Protections: Imposes further restrictions on
certain branches, such as who can merge, push, etc. into
the branch.

• �Code Owners: Defines who has expertise for specific
parts of your project’s codebase in order to require owners
to approve changes.

8

Try GitLab free for 30 days Follow us:

https://about.gitlab.com/free-trial/
https://www.linkedin.com/company/gitlab-com/?utm_campaign=autosd&utm_content=buildsecuresoftware&utm_asset_type=ebook&utm_budget=cmp
https://www.facebook.com/gitlab/?utm_campaign=autosd&utm_content=buildsecuresoftware&utm_asset_type=ebook&utm_budget=cmp
https://twitter.com/gitlab?utm_campaign=autosd&utm_content=buildsecuresoftware&utm_asset_type=ebook&utm_budget=cmp
https://www.youtube.com/channel/UCnMGQ8QHMAnVIsI3xJrihhg?utm_campaign=autosd&utm_content=buildsecuresoftware&utm_asset_type=ebook&utm_budget=cmp
https://about.gitlab.com/free-trial/?utm_campaign=autosd&utm_content=buildsecuresoftware&utm_asset_type=ebook&utm_budget=cmp

Part 4: Adhering to Compliance
As companies scale and practices change, controls may
become outdated or non-functional, rendering them open
to attacks by malicious actors. A compliance policy must be
established and adhered to in order to make sure that your
organization is secure and continues to be secure as you grow.

Compliance is the state of establishing and maintaining
guidelines set by either regulatory organizations, governments,
or internally. An important part of compliance is having an
oversight of your system and its status.

Vulnerability Reporting
A key function of the security team is to strengthen the
security posture of the organization as a whole. One key way
of doing this is the ability to manage all the vulnerabilities
contained within the production-level branch of an application.
The Vulnerability Report enables security teams to maintain
a good security posture by providing cumulative results of
all security jobs, regardless of whether the pipeline was
successful. The results provided are as follows:

•	 �Totals for vulnerabilities per severity level
•	 �Filters for common vulnerability attributes
•	 �Details of each vulnerability, presented in a tabular layout

Each detected vulnerability can be assigned a status such as
Dismissed, Resolved, Confirmed, or Detected in order to provide
documentation for others on the team. To assist with the triage
process, additional vulnerability details can be seen when drilling
down which include:

•	 Description
•	 When it was detected
•	 Current status
•	 Available actions
•	 Linked issues
•	 Actions log

This information is also provided in merge requests which
developers can use this data to address issues while coding
and communicate crucial information on the vulnerability to the
security team. The security team can use this data in order to
triage the vulnerabilities and build a plan on which to tackle
first. Furthermore, security teams can assess risk directly in the
vulnerability page by leveraging Artificial Intelligence (AI) and
Large Language Models (LLM) to do the following:

•	 Summarize the vulnerability.
•	 �Help developers and security analysts understand the
vulnerability, how it could be exploited, and how to fix it.

•	 �Provide a suggested mitigation and automatically create a
Merge Request.

9

Try GitLab free for 30 days Follow us:

https://www.linkedin.com/company/gitlab-com/?utm_campaign=autosd&utm_content=buildsecuresoftware&utm_asset_type=ebook&utm_budget=cmp
https://www.facebook.com/gitlab/?utm_campaign=autosd&utm_content=buildsecuresoftware&utm_asset_type=ebook&utm_budget=cmp
https://twitter.com/gitlab?utm_campaign=autosd&utm_content=buildsecuresoftware&utm_asset_type=ebook&utm_budget=cmp
https://www.youtube.com/channel/UCnMGQ8QHMAnVIsI3xJrihhg?utm_campaign=autosd&utm_content=buildsecuresoftware&utm_asset_type=ebook&utm_budget=cmp
https://about.gitlab.com/free-trial/?utm_campaign=autosd&utm_content=buildsecuresoftware&utm_asset_type=ebook&utm_budget=cmp

Security and Compliance Dashboards
Seeing Trends in Security are useful for the security team
to understand the cause of increased security risks as well
as what reduces them. This understanding can allow an
organization to create initiatives based on the data to reduce
the number of vulnerabilities introduced and increase the
number of vulnerabilities mitigated. A few examples where
trends can be valuable:

•	 �Seeing a large number of introduced vulnerabilities
on October 10, determine that a large refactor was
performed, resulting in performing smaller refactor
commits.

•	 �Seeing a large number of vulnerabilities reduced on
October 15, determine that a hackathon was held that
day, resulting in increased focus on the hackathon.

Trends in compliance are equally as important. Compliance
dashboards should be used to see where your organization
is falling out of compliance.

Auditing
System audits are very important for compliance. You must
be able to track important events, including who performed
the related action and when, so that if something happens
you are prepared to take action. You can use audit events to
track, for example:

• �Who changed the permission level of a particular user
and when.

• Who added a new user or removed a user and when.

10

Try GitLab free for 30 days Follow us:

https://www.linkedin.com/company/gitlab-com/?utm_campaign=autosd&utm_content=buildsecuresoftware&utm_asset_type=ebook&utm_budget=cmp
https://www.facebook.com/gitlab/?utm_campaign=autosd&utm_content=buildsecuresoftware&utm_asset_type=ebook&utm_budget=cmp
https://twitter.com/gitlab?utm_campaign=autosd&utm_content=buildsecuresoftware&utm_asset_type=ebook&utm_budget=cmp
https://www.youtube.com/channel/UCnMGQ8QHMAnVIsI3xJrihhg?utm_campaign=autosd&utm_content=buildsecuresoftware&utm_asset_type=ebook&utm_budget=cmp
https://about.gitlab.com/free-trial/?utm_campaign=autosd&utm_content=buildsecuresoftware&utm_asset_type=ebook&utm_budget=cmp

By implementing the security measures mentioned in this book, you can help
prevent unauthorized access, data breaches, and other security incidents. This
can assist your organization in protecting your data, your customers’ data, and
its reputation.

To learn more, scan the QR code below or visit this link.

Part 5: Conclusion

11

Try GitLab free for 30 days Follow us:

https://about.gitlab.com/solutions/security-compliance/?utm_campaign=autosd&utm_content=buildsecuresoftware&utm_asset_type=ebook&utm_budget=cmp%20
https://about.gitlab.com/solutions/security-compliance/?utm_campaign=autosd&utm_content=buildsecuresoftware&utm_asset_type=ebook&utm_budget=cmp%20
https://www.linkedin.com/company/gitlab-com/?utm_campaign=autosd&utm_content=buildsecuresoftware&utm_asset_type=ebook&utm_budget=cmp
https://www.facebook.com/gitlab/?utm_campaign=autosd&utm_content=buildsecuresoftware&utm_asset_type=ebook&utm_budget=cmp
https://twitter.com/gitlab?utm_campaign=autosd&utm_content=buildsecuresoftware&utm_asset_type=ebook&utm_budget=cmp
https://www.youtube.com/channel/UCnMGQ8QHMAnVIsI3xJrihhg?utm_campaign=autosd&utm_content=buildsecuresoftware&utm_asset_type=ebook&utm_budget=cmp
https://about.gitlab.com/free-trial/?utm_campaign=autosd&utm_content=buildsecuresoftware&utm_asset_type=ebook&utm_budget=cmp

Try GitLab free for 30 days

About GitLab

GitLab is the most comprehensive, AI-powered DevSecOps Platform for software
innovation. GitLab provides one interface, one data store, one permissions model,
one value stream, one set of reports, one spot to secure your code, one location
to deploy to any cloud, and one place for everyone to contribute. The platform
is the only true cloud-agnostic end-to-end DevSecOps platform that brings
together all DevSecOps capabilities in one place.

With GitLab, organizations can create, deliver, and manage code quickly and
continuously to translate business vision into reality. GitLab empowers customers
and users to innovate faster, scale more easily, and serve and retain customers
more effectively. Built on open source, GitLab works alongside its growing
community, which is composed of thousands of developers and millions of
users, to continuously deliver new innovations.

12

Follow us:

https://www.linkedin.com/company/gitlab-com/?utm_campaign=autosd&utm_content=buildsecuresoftware&utm_asset_type=ebook&utm_budget=cmp
https://www.facebook.com/gitlab/?utm_campaign=autosd&utm_content=buildsecuresoftware&utm_asset_type=ebook&utm_budget=cmp
https://twitter.com/gitlab?utm_campaign=autosd&utm_content=buildsecuresoftware&utm_asset_type=ebook&utm_budget=cmp
https://www.youtube.com/channel/UCnMGQ8QHMAnVIsI3xJrihhg?utm_campaign=autosd&utm_content=buildsecuresoftware&utm_asset_type=ebook&utm_budget=cmp
https://about.gitlab.com/free-trial/?utm_campaign=autosd&utm_content=buildsecuresoftware&utm_asset_type=ebook&utm_budget=cmp

